Directions Cosine and Ratios of Vector
Vector Algebra

87894 The vector \(\overrightarrow{\mathbf{x}}\) is perpendicular to the vectors \(\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=18 \hat{i}-22 \hat{j}-5 \hat{k}\) and makes an obtuse angle with \(\vec{j} \cdot\) If \(|x|=14\), then \(\overrightarrow{\mathbf{x}}=\)

1 \(8 \hat{i}+12 \hat{j}+24 \hat{k}\)
2 \(-8 \hat{i}+6 \hat{j}+24 \hat{k}\)
3 \(8 \hat{i}-12 \hat{j}-24 \hat{k}\)
4 \(-8 \hat{i}-12 \hat{j}+24 \hat{k}\).
Vector Algebra

87895 If \(\overrightarrow{\mathbf{c}}\) is the unit vector in the direction of sum of the vectors \(\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}\) and \(\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}\) then \(|\overrightarrow{\mathbf{c}}|=\) \(\qquad\)

1 \(\frac{4}{\sqrt{29}} \hat{\mathrm{i}}+\frac{3}{\sqrt{29}} \hat{\mathrm{j}}-\frac{2}{\sqrt{29}} \hat{\mathrm{k}}\)
2 1
3 0
4 -1
Vector Algebra

87896 The direction angles of the line \(x=4 z+3, y=2\) \(-3 \mathrm{z}\) are \(\alpha, \beta\) and \(\gamma\) then \(\cos \alpha+\cos \beta+\cos \gamma=\ldots\).

1 \(\frac{2}{\sqrt{26}}\)
2 \(\frac{8}{\sqrt{26}}\)
3 1
4 2
Vector Algebra

87897 The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{5 \pi}{6}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is \(\frac{-6}{\sqrt{3}}\), then \(|\overrightarrow{\mathbf{a}}|\) is equal to:

1 6
2 \(\frac{\sqrt{3}}{2}\)
3 12
4 4
5 16
Vector Algebra

87898 Equation of the plane that contains the lines \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\lambda(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})\)
and \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\mu(-\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})\), is

1 \(\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})=-4\)
2 \(\overrightarrow{\mathrm{r}} \times(-\hat{i}+\hat{j}+\hat{k})=0\)
3 \(\vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=0\)
4 None of these
Vector Algebra

87894 The vector \(\overrightarrow{\mathbf{x}}\) is perpendicular to the vectors \(\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=18 \hat{i}-22 \hat{j}-5 \hat{k}\) and makes an obtuse angle with \(\vec{j} \cdot\) If \(|x|=14\), then \(\overrightarrow{\mathbf{x}}=\)

1 \(8 \hat{i}+12 \hat{j}+24 \hat{k}\)
2 \(-8 \hat{i}+6 \hat{j}+24 \hat{k}\)
3 \(8 \hat{i}-12 \hat{j}-24 \hat{k}\)
4 \(-8 \hat{i}-12 \hat{j}+24 \hat{k}\).
Vector Algebra

87895 If \(\overrightarrow{\mathbf{c}}\) is the unit vector in the direction of sum of the vectors \(\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}\) and \(\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}\) then \(|\overrightarrow{\mathbf{c}}|=\) \(\qquad\)

1 \(\frac{4}{\sqrt{29}} \hat{\mathrm{i}}+\frac{3}{\sqrt{29}} \hat{\mathrm{j}}-\frac{2}{\sqrt{29}} \hat{\mathrm{k}}\)
2 1
3 0
4 -1
Vector Algebra

87896 The direction angles of the line \(x=4 z+3, y=2\) \(-3 \mathrm{z}\) are \(\alpha, \beta\) and \(\gamma\) then \(\cos \alpha+\cos \beta+\cos \gamma=\ldots\).

1 \(\frac{2}{\sqrt{26}}\)
2 \(\frac{8}{\sqrt{26}}\)
3 1
4 2
Vector Algebra

87897 The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{5 \pi}{6}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is \(\frac{-6}{\sqrt{3}}\), then \(|\overrightarrow{\mathbf{a}}|\) is equal to:

1 6
2 \(\frac{\sqrt{3}}{2}\)
3 12
4 4
5 16
Vector Algebra

87898 Equation of the plane that contains the lines \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\lambda(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})\)
and \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\mu(-\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})\), is

1 \(\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})=-4\)
2 \(\overrightarrow{\mathrm{r}} \times(-\hat{i}+\hat{j}+\hat{k})=0\)
3 \(\vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=0\)
4 None of these
Vector Algebra

87894 The vector \(\overrightarrow{\mathbf{x}}\) is perpendicular to the vectors \(\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=18 \hat{i}-22 \hat{j}-5 \hat{k}\) and makes an obtuse angle with \(\vec{j} \cdot\) If \(|x|=14\), then \(\overrightarrow{\mathbf{x}}=\)

1 \(8 \hat{i}+12 \hat{j}+24 \hat{k}\)
2 \(-8 \hat{i}+6 \hat{j}+24 \hat{k}\)
3 \(8 \hat{i}-12 \hat{j}-24 \hat{k}\)
4 \(-8 \hat{i}-12 \hat{j}+24 \hat{k}\).
Vector Algebra

87895 If \(\overrightarrow{\mathbf{c}}\) is the unit vector in the direction of sum of the vectors \(\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}\) and \(\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}\) then \(|\overrightarrow{\mathbf{c}}|=\) \(\qquad\)

1 \(\frac{4}{\sqrt{29}} \hat{\mathrm{i}}+\frac{3}{\sqrt{29}} \hat{\mathrm{j}}-\frac{2}{\sqrt{29}} \hat{\mathrm{k}}\)
2 1
3 0
4 -1
Vector Algebra

87896 The direction angles of the line \(x=4 z+3, y=2\) \(-3 \mathrm{z}\) are \(\alpha, \beta\) and \(\gamma\) then \(\cos \alpha+\cos \beta+\cos \gamma=\ldots\).

1 \(\frac{2}{\sqrt{26}}\)
2 \(\frac{8}{\sqrt{26}}\)
3 1
4 2
Vector Algebra

87897 The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{5 \pi}{6}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is \(\frac{-6}{\sqrt{3}}\), then \(|\overrightarrow{\mathbf{a}}|\) is equal to:

1 6
2 \(\frac{\sqrt{3}}{2}\)
3 12
4 4
5 16
Vector Algebra

87898 Equation of the plane that contains the lines \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\lambda(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})\)
and \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\mu(-\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})\), is

1 \(\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})=-4\)
2 \(\overrightarrow{\mathrm{r}} \times(-\hat{i}+\hat{j}+\hat{k})=0\)
3 \(\vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=0\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87894 The vector \(\overrightarrow{\mathbf{x}}\) is perpendicular to the vectors \(\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=18 \hat{i}-22 \hat{j}-5 \hat{k}\) and makes an obtuse angle with \(\vec{j} \cdot\) If \(|x|=14\), then \(\overrightarrow{\mathbf{x}}=\)

1 \(8 \hat{i}+12 \hat{j}+24 \hat{k}\)
2 \(-8 \hat{i}+6 \hat{j}+24 \hat{k}\)
3 \(8 \hat{i}-12 \hat{j}-24 \hat{k}\)
4 \(-8 \hat{i}-12 \hat{j}+24 \hat{k}\).
Vector Algebra

87895 If \(\overrightarrow{\mathbf{c}}\) is the unit vector in the direction of sum of the vectors \(\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}\) and \(\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}\) then \(|\overrightarrow{\mathbf{c}}|=\) \(\qquad\)

1 \(\frac{4}{\sqrt{29}} \hat{\mathrm{i}}+\frac{3}{\sqrt{29}} \hat{\mathrm{j}}-\frac{2}{\sqrt{29}} \hat{\mathrm{k}}\)
2 1
3 0
4 -1
Vector Algebra

87896 The direction angles of the line \(x=4 z+3, y=2\) \(-3 \mathrm{z}\) are \(\alpha, \beta\) and \(\gamma\) then \(\cos \alpha+\cos \beta+\cos \gamma=\ldots\).

1 \(\frac{2}{\sqrt{26}}\)
2 \(\frac{8}{\sqrt{26}}\)
3 1
4 2
Vector Algebra

87897 The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{5 \pi}{6}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is \(\frac{-6}{\sqrt{3}}\), then \(|\overrightarrow{\mathbf{a}}|\) is equal to:

1 6
2 \(\frac{\sqrt{3}}{2}\)
3 12
4 4
5 16
Vector Algebra

87898 Equation of the plane that contains the lines \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\lambda(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})\)
and \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\mu(-\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})\), is

1 \(\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})=-4\)
2 \(\overrightarrow{\mathrm{r}} \times(-\hat{i}+\hat{j}+\hat{k})=0\)
3 \(\vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=0\)
4 None of these
Vector Algebra

87894 The vector \(\overrightarrow{\mathbf{x}}\) is perpendicular to the vectors \(\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=18 \hat{i}-22 \hat{j}-5 \hat{k}\) and makes an obtuse angle with \(\vec{j} \cdot\) If \(|x|=14\), then \(\overrightarrow{\mathbf{x}}=\)

1 \(8 \hat{i}+12 \hat{j}+24 \hat{k}\)
2 \(-8 \hat{i}+6 \hat{j}+24 \hat{k}\)
3 \(8 \hat{i}-12 \hat{j}-24 \hat{k}\)
4 \(-8 \hat{i}-12 \hat{j}+24 \hat{k}\).
Vector Algebra

87895 If \(\overrightarrow{\mathbf{c}}\) is the unit vector in the direction of sum of the vectors \(\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}\) and \(\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}\) then \(|\overrightarrow{\mathbf{c}}|=\) \(\qquad\)

1 \(\frac{4}{\sqrt{29}} \hat{\mathrm{i}}+\frac{3}{\sqrt{29}} \hat{\mathrm{j}}-\frac{2}{\sqrt{29}} \hat{\mathrm{k}}\)
2 1
3 0
4 -1
Vector Algebra

87896 The direction angles of the line \(x=4 z+3, y=2\) \(-3 \mathrm{z}\) are \(\alpha, \beta\) and \(\gamma\) then \(\cos \alpha+\cos \beta+\cos \gamma=\ldots\).

1 \(\frac{2}{\sqrt{26}}\)
2 \(\frac{8}{\sqrt{26}}\)
3 1
4 2
Vector Algebra

87897 The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{5 \pi}{6}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is \(\frac{-6}{\sqrt{3}}\), then \(|\overrightarrow{\mathbf{a}}|\) is equal to:

1 6
2 \(\frac{\sqrt{3}}{2}\)
3 12
4 4
5 16
Vector Algebra

87898 Equation of the plane that contains the lines \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\lambda(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})\)
and \(\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\mu(-\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})\), is

1 \(\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})=-4\)
2 \(\overrightarrow{\mathrm{r}} \times(-\hat{i}+\hat{j}+\hat{k})=0\)
3 \(\vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=0\)
4 None of these