Directions Cosine and Ratios of Vector
Vector Algebra

87888 If \(a, b, c\) are any thr\(\left(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\right)\)
ee mutually
perpendicular vectors of equal magnitude a, then \(|\mathbf{a}+\mathbf{b}+\mathbf{c}|\)

1 a
2 \(\sqrt{2} \mathrm{a}\)
3 \(\sqrt{3} \mathrm{a}\)
4 \(2 \mathrm{a}\)
Vector Algebra

87872 The direction cosines of the vector \(2 \hat{i}+\hat{j}-2 \hat{k}\) is equal to

1 \(\left\langle\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right\rangle\)
2 \(\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle\)
3 \(\left\langle\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right\rangle\)
4 \(\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle\)
Vector Algebra

87873 The projections of a directed line segment on the coordinate axis are \(12,4,3\). The direction cosines of the line are

1 \(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
2 \(\frac{12}{13}, \frac{4}{13},-\frac{3}{13}\)
3 \(-\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
4 \(\frac{12}{13},-\frac{4}{13},-\frac{3}{13}\)
Vector Algebra

87880 Angle made by the position vector of the point \((5,-4,-3)\) with the positive direction of \(X\) - axis is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87887 The direction cosines of the vector
\(\overrightarrow{\mathbf{a}}=-\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\) are

1 \(\frac{-2}{\sqrt{8}}, \frac{1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
2 \(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
3 \(\frac{2}{\sqrt{8}}, \frac{-1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
4 \(\frac{-2}{\sqrt{30}}, \frac{-1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
Vector Algebra

87888 If \(a, b, c\) are any thr\(\left(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\right)\)
ee mutually
perpendicular vectors of equal magnitude a, then \(|\mathbf{a}+\mathbf{b}+\mathbf{c}|\)

1 a
2 \(\sqrt{2} \mathrm{a}\)
3 \(\sqrt{3} \mathrm{a}\)
4 \(2 \mathrm{a}\)
Vector Algebra

87872 The direction cosines of the vector \(2 \hat{i}+\hat{j}-2 \hat{k}\) is equal to

1 \(\left\langle\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right\rangle\)
2 \(\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle\)
3 \(\left\langle\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right\rangle\)
4 \(\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle\)
Vector Algebra

87873 The projections of a directed line segment on the coordinate axis are \(12,4,3\). The direction cosines of the line are

1 \(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
2 \(\frac{12}{13}, \frac{4}{13},-\frac{3}{13}\)
3 \(-\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
4 \(\frac{12}{13},-\frac{4}{13},-\frac{3}{13}\)
Vector Algebra

87880 Angle made by the position vector of the point \((5,-4,-3)\) with the positive direction of \(X\) - axis is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87887 The direction cosines of the vector
\(\overrightarrow{\mathbf{a}}=-\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\) are

1 \(\frac{-2}{\sqrt{8}}, \frac{1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
2 \(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
3 \(\frac{2}{\sqrt{8}}, \frac{-1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
4 \(\frac{-2}{\sqrt{30}}, \frac{-1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
Vector Algebra

87888 If \(a, b, c\) are any thr\(\left(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\right)\)
ee mutually
perpendicular vectors of equal magnitude a, then \(|\mathbf{a}+\mathbf{b}+\mathbf{c}|\)

1 a
2 \(\sqrt{2} \mathrm{a}\)
3 \(\sqrt{3} \mathrm{a}\)
4 \(2 \mathrm{a}\)
Vector Algebra

87872 The direction cosines of the vector \(2 \hat{i}+\hat{j}-2 \hat{k}\) is equal to

1 \(\left\langle\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right\rangle\)
2 \(\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle\)
3 \(\left\langle\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right\rangle\)
4 \(\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle\)
Vector Algebra

87873 The projections of a directed line segment on the coordinate axis are \(12,4,3\). The direction cosines of the line are

1 \(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
2 \(\frac{12}{13}, \frac{4}{13},-\frac{3}{13}\)
3 \(-\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
4 \(\frac{12}{13},-\frac{4}{13},-\frac{3}{13}\)
Vector Algebra

87880 Angle made by the position vector of the point \((5,-4,-3)\) with the positive direction of \(X\) - axis is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87887 The direction cosines of the vector
\(\overrightarrow{\mathbf{a}}=-\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\) are

1 \(\frac{-2}{\sqrt{8}}, \frac{1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
2 \(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
3 \(\frac{2}{\sqrt{8}}, \frac{-1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
4 \(\frac{-2}{\sqrt{30}}, \frac{-1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
Vector Algebra

87888 If \(a, b, c\) are any thr\(\left(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\right)\)
ee mutually
perpendicular vectors of equal magnitude a, then \(|\mathbf{a}+\mathbf{b}+\mathbf{c}|\)

1 a
2 \(\sqrt{2} \mathrm{a}\)
3 \(\sqrt{3} \mathrm{a}\)
4 \(2 \mathrm{a}\)
Vector Algebra

87872 The direction cosines of the vector \(2 \hat{i}+\hat{j}-2 \hat{k}\) is equal to

1 \(\left\langle\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right\rangle\)
2 \(\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle\)
3 \(\left\langle\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right\rangle\)
4 \(\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle\)
Vector Algebra

87873 The projections of a directed line segment on the coordinate axis are \(12,4,3\). The direction cosines of the line are

1 \(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
2 \(\frac{12}{13}, \frac{4}{13},-\frac{3}{13}\)
3 \(-\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
4 \(\frac{12}{13},-\frac{4}{13},-\frac{3}{13}\)
Vector Algebra

87880 Angle made by the position vector of the point \((5,-4,-3)\) with the positive direction of \(X\) - axis is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87887 The direction cosines of the vector
\(\overrightarrow{\mathbf{a}}=-\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\) are

1 \(\frac{-2}{\sqrt{8}}, \frac{1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
2 \(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
3 \(\frac{2}{\sqrt{8}}, \frac{-1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
4 \(\frac{-2}{\sqrt{30}}, \frac{-1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
Vector Algebra

87888 If \(a, b, c\) are any thr\(\left(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\right)\)
ee mutually
perpendicular vectors of equal magnitude a, then \(|\mathbf{a}+\mathbf{b}+\mathbf{c}|\)

1 a
2 \(\sqrt{2} \mathrm{a}\)
3 \(\sqrt{3} \mathrm{a}\)
4 \(2 \mathrm{a}\)
Vector Algebra

87872 The direction cosines of the vector \(2 \hat{i}+\hat{j}-2 \hat{k}\) is equal to

1 \(\left\langle\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right\rangle\)
2 \(\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle\)
3 \(\left\langle\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right\rangle\)
4 \(\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle\)
Vector Algebra

87873 The projections of a directed line segment on the coordinate axis are \(12,4,3\). The direction cosines of the line are

1 \(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
2 \(\frac{12}{13}, \frac{4}{13},-\frac{3}{13}\)
3 \(-\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\)
4 \(\frac{12}{13},-\frac{4}{13},-\frac{3}{13}\)
Vector Algebra

87880 Angle made by the position vector of the point \((5,-4,-3)\) with the positive direction of \(X\) - axis is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87887 The direction cosines of the vector
\(\overrightarrow{\mathbf{a}}=-\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\) are

1 \(\frac{-2}{\sqrt{8}}, \frac{1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
2 \(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)
3 \(\frac{2}{\sqrt{8}}, \frac{-1}{\sqrt{8}}, \frac{-5}{\sqrt{8}}\)
4 \(\frac{-2}{\sqrt{30}}, \frac{-1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}\)