87815 Consider a tetrahedron with \(f\) aces \(\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, \mathbf{F}_4\) Let \(\overrightarrow{\mathbf{V}}_1, \overrightarrow{\mathbf{V}}_2, \overrightarrow{\mathbf{V}}_3, \overrightarrow{\mathbf{V}}_4\) be the vectors whose magnitudes are respectively equal to areas of \(F_1, F_2, F_3, F_4\) and whose directions are perpendicular to these faces in outward direction, then \(\left|\overrightarrow{\mathbf{V}}_1+\overrightarrow{\mathbf{V}}_2+\overrightarrow{\mathbf{V}}_3+\overrightarrow{\mathbf{V}}_4\right|\) equals
87816 In a trapezoid of the vector \(\overrightarrow{\mathrm{BC}}=\lambda \overrightarrow{\mathrm{AD}}\). We will, then find that \(\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{BD}}\) is collinear with \(\overrightarrow{\mathrm{AD}}\).If \(\overrightarrow{\mathrm{P}}=\mu \overrightarrow{\mathrm{AD}}\), then
87815 Consider a tetrahedron with \(f\) aces \(\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, \mathbf{F}_4\) Let \(\overrightarrow{\mathbf{V}}_1, \overrightarrow{\mathbf{V}}_2, \overrightarrow{\mathbf{V}}_3, \overrightarrow{\mathbf{V}}_4\) be the vectors whose magnitudes are respectively equal to areas of \(F_1, F_2, F_3, F_4\) and whose directions are perpendicular to these faces in outward direction, then \(\left|\overrightarrow{\mathbf{V}}_1+\overrightarrow{\mathbf{V}}_2+\overrightarrow{\mathbf{V}}_3+\overrightarrow{\mathbf{V}}_4\right|\) equals
87816 In a trapezoid of the vector \(\overrightarrow{\mathrm{BC}}=\lambda \overrightarrow{\mathrm{AD}}\). We will, then find that \(\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{BD}}\) is collinear with \(\overrightarrow{\mathrm{AD}}\).If \(\overrightarrow{\mathrm{P}}=\mu \overrightarrow{\mathrm{AD}}\), then
87815 Consider a tetrahedron with \(f\) aces \(\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, \mathbf{F}_4\) Let \(\overrightarrow{\mathbf{V}}_1, \overrightarrow{\mathbf{V}}_2, \overrightarrow{\mathbf{V}}_3, \overrightarrow{\mathbf{V}}_4\) be the vectors whose magnitudes are respectively equal to areas of \(F_1, F_2, F_3, F_4\) and whose directions are perpendicular to these faces in outward direction, then \(\left|\overrightarrow{\mathbf{V}}_1+\overrightarrow{\mathbf{V}}_2+\overrightarrow{\mathbf{V}}_3+\overrightarrow{\mathbf{V}}_4\right|\) equals
87816 In a trapezoid of the vector \(\overrightarrow{\mathrm{BC}}=\lambda \overrightarrow{\mathrm{AD}}\). We will, then find that \(\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{BD}}\) is collinear with \(\overrightarrow{\mathrm{AD}}\).If \(\overrightarrow{\mathrm{P}}=\mu \overrightarrow{\mathrm{AD}}\), then
87815 Consider a tetrahedron with \(f\) aces \(\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, \mathbf{F}_4\) Let \(\overrightarrow{\mathbf{V}}_1, \overrightarrow{\mathbf{V}}_2, \overrightarrow{\mathbf{V}}_3, \overrightarrow{\mathbf{V}}_4\) be the vectors whose magnitudes are respectively equal to areas of \(F_1, F_2, F_3, F_4\) and whose directions are perpendicular to these faces in outward direction, then \(\left|\overrightarrow{\mathbf{V}}_1+\overrightarrow{\mathbf{V}}_2+\overrightarrow{\mathbf{V}}_3+\overrightarrow{\mathbf{V}}_4\right|\) equals
87816 In a trapezoid of the vector \(\overrightarrow{\mathrm{BC}}=\lambda \overrightarrow{\mathrm{AD}}\). We will, then find that \(\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{BD}}\) is collinear with \(\overrightarrow{\mathrm{AD}}\).If \(\overrightarrow{\mathrm{P}}=\mu \overrightarrow{\mathrm{AD}}\), then
87815 Consider a tetrahedron with \(f\) aces \(\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, \mathbf{F}_4\) Let \(\overrightarrow{\mathbf{V}}_1, \overrightarrow{\mathbf{V}}_2, \overrightarrow{\mathbf{V}}_3, \overrightarrow{\mathbf{V}}_4\) be the vectors whose magnitudes are respectively equal to areas of \(F_1, F_2, F_3, F_4\) and whose directions are perpendicular to these faces in outward direction, then \(\left|\overrightarrow{\mathbf{V}}_1+\overrightarrow{\mathbf{V}}_2+\overrightarrow{\mathbf{V}}_3+\overrightarrow{\mathbf{V}}_4\right|\) equals
87816 In a trapezoid of the vector \(\overrightarrow{\mathrm{BC}}=\lambda \overrightarrow{\mathrm{AD}}\). We will, then find that \(\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{BD}}\) is collinear with \(\overrightarrow{\mathrm{AD}}\).If \(\overrightarrow{\mathrm{P}}=\mu \overrightarrow{\mathrm{AD}}\), then