87784 Let \(\vec{a}, \vec{b}, \vec{c}\) be three non-coplanar vectors and \(\vec{a}^{\prime}=\frac{\vec{b} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{b}^{\prime}}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{c}}^{\prime} \frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]} \cdot\) The length of the altitude of the parallelepiped formed by \(\vec{a}\) ', \(\overrightarrow{\mathbf{b}}^{\prime}, \overrightarrow{\mathbf{c}}^{\prime}\) as coterminous edges, with respect to the base having \(\overrightarrow{\mathbf{a}}{ }^{\prime}\) and \(\overrightarrow{\mathbf{c}}^{\prime}\) as its adjacent sides is
87787 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are three vectors such that \(|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3\) and \(\vec{b} \cdot \vec{c}=0\). If the projection of \(b\) along \(a\) is equal to the projection of \(\overrightarrow{\mathbf{c}}\) along \(\overrightarrow{\mathbf{a}}\), then \(|\mathbf{2} \overrightarrow{\mathbf{a}}+\mathbf{3} \overrightarrow{\mathbf{b}}-\mathbf{3} \overrightarrow{\mathbf{c}}|=\)
87790 If \(O\) is any point \(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=x \overrightarrow{O E}\), then find \(x\), given that \(A B C D\) is quadrilateral, \(E\) is the point of intersection of the line joining the mid-points of opposite sides.
87784 Let \(\vec{a}, \vec{b}, \vec{c}\) be three non-coplanar vectors and \(\vec{a}^{\prime}=\frac{\vec{b} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{b}^{\prime}}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{c}}^{\prime} \frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]} \cdot\) The length of the altitude of the parallelepiped formed by \(\vec{a}\) ', \(\overrightarrow{\mathbf{b}}^{\prime}, \overrightarrow{\mathbf{c}}^{\prime}\) as coterminous edges, with respect to the base having \(\overrightarrow{\mathbf{a}}{ }^{\prime}\) and \(\overrightarrow{\mathbf{c}}^{\prime}\) as its adjacent sides is
87787 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are three vectors such that \(|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3\) and \(\vec{b} \cdot \vec{c}=0\). If the projection of \(b\) along \(a\) is equal to the projection of \(\overrightarrow{\mathbf{c}}\) along \(\overrightarrow{\mathbf{a}}\), then \(|\mathbf{2} \overrightarrow{\mathbf{a}}+\mathbf{3} \overrightarrow{\mathbf{b}}-\mathbf{3} \overrightarrow{\mathbf{c}}|=\)
87790 If \(O\) is any point \(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=x \overrightarrow{O E}\), then find \(x\), given that \(A B C D\) is quadrilateral, \(E\) is the point of intersection of the line joining the mid-points of opposite sides.
87784 Let \(\vec{a}, \vec{b}, \vec{c}\) be three non-coplanar vectors and \(\vec{a}^{\prime}=\frac{\vec{b} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{b}^{\prime}}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{c}}^{\prime} \frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]} \cdot\) The length of the altitude of the parallelepiped formed by \(\vec{a}\) ', \(\overrightarrow{\mathbf{b}}^{\prime}, \overrightarrow{\mathbf{c}}^{\prime}\) as coterminous edges, with respect to the base having \(\overrightarrow{\mathbf{a}}{ }^{\prime}\) and \(\overrightarrow{\mathbf{c}}^{\prime}\) as its adjacent sides is
87787 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are three vectors such that \(|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3\) and \(\vec{b} \cdot \vec{c}=0\). If the projection of \(b\) along \(a\) is equal to the projection of \(\overrightarrow{\mathbf{c}}\) along \(\overrightarrow{\mathbf{a}}\), then \(|\mathbf{2} \overrightarrow{\mathbf{a}}+\mathbf{3} \overrightarrow{\mathbf{b}}-\mathbf{3} \overrightarrow{\mathbf{c}}|=\)
87790 If \(O\) is any point \(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=x \overrightarrow{O E}\), then find \(x\), given that \(A B C D\) is quadrilateral, \(E\) is the point of intersection of the line joining the mid-points of opposite sides.
87784 Let \(\vec{a}, \vec{b}, \vec{c}\) be three non-coplanar vectors and \(\vec{a}^{\prime}=\frac{\vec{b} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{b}^{\prime}}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{c}}^{\prime} \frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]} \cdot\) The length of the altitude of the parallelepiped formed by \(\vec{a}\) ', \(\overrightarrow{\mathbf{b}}^{\prime}, \overrightarrow{\mathbf{c}}^{\prime}\) as coterminous edges, with respect to the base having \(\overrightarrow{\mathbf{a}}{ }^{\prime}\) and \(\overrightarrow{\mathbf{c}}^{\prime}\) as its adjacent sides is
87787 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are three vectors such that \(|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3\) and \(\vec{b} \cdot \vec{c}=0\). If the projection of \(b\) along \(a\) is equal to the projection of \(\overrightarrow{\mathbf{c}}\) along \(\overrightarrow{\mathbf{a}}\), then \(|\mathbf{2} \overrightarrow{\mathbf{a}}+\mathbf{3} \overrightarrow{\mathbf{b}}-\mathbf{3} \overrightarrow{\mathbf{c}}|=\)
87790 If \(O\) is any point \(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=x \overrightarrow{O E}\), then find \(x\), given that \(A B C D\) is quadrilateral, \(E\) is the point of intersection of the line joining the mid-points of opposite sides.
87784 Let \(\vec{a}, \vec{b}, \vec{c}\) be three non-coplanar vectors and \(\vec{a}^{\prime}=\frac{\vec{b} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{b}^{\prime}}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{c}}^{\prime} \frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]} \cdot\) The length of the altitude of the parallelepiped formed by \(\vec{a}\) ', \(\overrightarrow{\mathbf{b}}^{\prime}, \overrightarrow{\mathbf{c}}^{\prime}\) as coterminous edges, with respect to the base having \(\overrightarrow{\mathbf{a}}{ }^{\prime}\) and \(\overrightarrow{\mathbf{c}}^{\prime}\) as its adjacent sides is
87787 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are three vectors such that \(|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3\) and \(\vec{b} \cdot \vec{c}=0\). If the projection of \(b\) along \(a\) is equal to the projection of \(\overrightarrow{\mathbf{c}}\) along \(\overrightarrow{\mathbf{a}}\), then \(|\mathbf{2} \overrightarrow{\mathbf{a}}+\mathbf{3} \overrightarrow{\mathbf{b}}-\mathbf{3} \overrightarrow{\mathbf{c}}|=\)
87790 If \(O\) is any point \(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=x \overrightarrow{O E}\), then find \(x\), given that \(A B C D\) is quadrilateral, \(E\) is the point of intersection of the line joining the mid-points of opposite sides.