Addition and Projection of Vectors
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87740 If \(\vec{a}\) and \(\vec{b}\) are two unit vectors inclined at an angle \(\frac{\pi}{3}\), then the value of \(|\vec{a}+\vec{b}|\) is

1 equal to 1
2 greater than 1
3 equal to 0
4 less than 1
Vector Algebra

87741 A unit vector perpendicular to both \(\hat{i}+\hat{j}+\hat{k}\) and \(2 \hat{i}+\hat{j}+3 \hat{k}\) is

1 \((2 \hat{i}-\hat{j}-\hat{k}) \sqrt{6}\)
2 \(\frac{(2 \hat{i}-\hat{j}-\hat{k})}{\sqrt{6}}\)
3 \(2 \hat{i}+\hat{j}+\hat{k}\)
4 \(\frac{(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})}{\sqrt{6}}\)
Vector Algebra

87743 A vector perpendicular to the plane containing the points \(A(1,-1,2), B(2,0,-1), C(0,2,1)\) is

1 \(4 \hat{i}+8 \hat{j}-4 \hat{k}\)
2 \(8 \hat{i}+4 \hat{j}+4 \hat{k}\)
3 \(3 \hat{i}+\hat{j}+2 \hat{k}\)
4 \(\hat{i}+\hat{j}-\hat{k}\)
Vector Algebra

87744 If \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{c}=3 \hat{i}+5 \hat{j}-\hat{k}\), then a vector perpendicular to \(\vec{a}\) and in the plane containing \(\overrightarrow{\mathbf{b}}\) and \(\overrightarrow{\mathbf{c}}\) is

1 \(-17 \hat{i}+21 \hat{j}-97 \hat{k}\)
2 \(17 \hat{i}+21 \hat{j}-123 \hat{k}\)
3 \(-17 \hat{i}-21 \hat{j}+97 \hat{k}\)
4 \(-17 \hat{i}-21 \hat{j}-97 \hat{k}\)
Vector Algebra

87740 If \(\vec{a}\) and \(\vec{b}\) are two unit vectors inclined at an angle \(\frac{\pi}{3}\), then the value of \(|\vec{a}+\vec{b}|\) is

1 equal to 1
2 greater than 1
3 equal to 0
4 less than 1
Vector Algebra

87741 A unit vector perpendicular to both \(\hat{i}+\hat{j}+\hat{k}\) and \(2 \hat{i}+\hat{j}+3 \hat{k}\) is

1 \((2 \hat{i}-\hat{j}-\hat{k}) \sqrt{6}\)
2 \(\frac{(2 \hat{i}-\hat{j}-\hat{k})}{\sqrt{6}}\)
3 \(2 \hat{i}+\hat{j}+\hat{k}\)
4 \(\frac{(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})}{\sqrt{6}}\)
Vector Algebra

87743 A vector perpendicular to the plane containing the points \(A(1,-1,2), B(2,0,-1), C(0,2,1)\) is

1 \(4 \hat{i}+8 \hat{j}-4 \hat{k}\)
2 \(8 \hat{i}+4 \hat{j}+4 \hat{k}\)
3 \(3 \hat{i}+\hat{j}+2 \hat{k}\)
4 \(\hat{i}+\hat{j}-\hat{k}\)
Vector Algebra

87744 If \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{c}=3 \hat{i}+5 \hat{j}-\hat{k}\), then a vector perpendicular to \(\vec{a}\) and in the plane containing \(\overrightarrow{\mathbf{b}}\) and \(\overrightarrow{\mathbf{c}}\) is

1 \(-17 \hat{i}+21 \hat{j}-97 \hat{k}\)
2 \(17 \hat{i}+21 \hat{j}-123 \hat{k}\)
3 \(-17 \hat{i}-21 \hat{j}+97 \hat{k}\)
4 \(-17 \hat{i}-21 \hat{j}-97 \hat{k}\)
Vector Algebra

87740 If \(\vec{a}\) and \(\vec{b}\) are two unit vectors inclined at an angle \(\frac{\pi}{3}\), then the value of \(|\vec{a}+\vec{b}|\) is

1 equal to 1
2 greater than 1
3 equal to 0
4 less than 1
Vector Algebra

87741 A unit vector perpendicular to both \(\hat{i}+\hat{j}+\hat{k}\) and \(2 \hat{i}+\hat{j}+3 \hat{k}\) is

1 \((2 \hat{i}-\hat{j}-\hat{k}) \sqrt{6}\)
2 \(\frac{(2 \hat{i}-\hat{j}-\hat{k})}{\sqrt{6}}\)
3 \(2 \hat{i}+\hat{j}+\hat{k}\)
4 \(\frac{(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})}{\sqrt{6}}\)
Vector Algebra

87743 A vector perpendicular to the plane containing the points \(A(1,-1,2), B(2,0,-1), C(0,2,1)\) is

1 \(4 \hat{i}+8 \hat{j}-4 \hat{k}\)
2 \(8 \hat{i}+4 \hat{j}+4 \hat{k}\)
3 \(3 \hat{i}+\hat{j}+2 \hat{k}\)
4 \(\hat{i}+\hat{j}-\hat{k}\)
Vector Algebra

87744 If \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{c}=3 \hat{i}+5 \hat{j}-\hat{k}\), then a vector perpendicular to \(\vec{a}\) and in the plane containing \(\overrightarrow{\mathbf{b}}\) and \(\overrightarrow{\mathbf{c}}\) is

1 \(-17 \hat{i}+21 \hat{j}-97 \hat{k}\)
2 \(17 \hat{i}+21 \hat{j}-123 \hat{k}\)
3 \(-17 \hat{i}-21 \hat{j}+97 \hat{k}\)
4 \(-17 \hat{i}-21 \hat{j}-97 \hat{k}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87740 If \(\vec{a}\) and \(\vec{b}\) are two unit vectors inclined at an angle \(\frac{\pi}{3}\), then the value of \(|\vec{a}+\vec{b}|\) is

1 equal to 1
2 greater than 1
3 equal to 0
4 less than 1
Vector Algebra

87741 A unit vector perpendicular to both \(\hat{i}+\hat{j}+\hat{k}\) and \(2 \hat{i}+\hat{j}+3 \hat{k}\) is

1 \((2 \hat{i}-\hat{j}-\hat{k}) \sqrt{6}\)
2 \(\frac{(2 \hat{i}-\hat{j}-\hat{k})}{\sqrt{6}}\)
3 \(2 \hat{i}+\hat{j}+\hat{k}\)
4 \(\frac{(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})}{\sqrt{6}}\)
Vector Algebra

87743 A vector perpendicular to the plane containing the points \(A(1,-1,2), B(2,0,-1), C(0,2,1)\) is

1 \(4 \hat{i}+8 \hat{j}-4 \hat{k}\)
2 \(8 \hat{i}+4 \hat{j}+4 \hat{k}\)
3 \(3 \hat{i}+\hat{j}+2 \hat{k}\)
4 \(\hat{i}+\hat{j}-\hat{k}\)
Vector Algebra

87744 If \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{c}=3 \hat{i}+5 \hat{j}-\hat{k}\), then a vector perpendicular to \(\vec{a}\) and in the plane containing \(\overrightarrow{\mathbf{b}}\) and \(\overrightarrow{\mathbf{c}}\) is

1 \(-17 \hat{i}+21 \hat{j}-97 \hat{k}\)
2 \(17 \hat{i}+21 \hat{j}-123 \hat{k}\)
3 \(-17 \hat{i}-21 \hat{j}+97 \hat{k}\)
4 \(-17 \hat{i}-21 \hat{j}-97 \hat{k}\)