Distance, Position and Section Formula of Vector
Vector Algebra

87660 If a=2i^+3j^+k^,b=4i^+5j^+3k^
and c=6i^+j^+5k^ are the position vectors of the vertices of triangle ABC respectively, then the position vector of the intersection of the medians of the triangle ABC is

1 2i^+3j^+3k^
2 4i^+3j^+3k^
3 5i^+3j^+3k^
4 3i^+3j^+4k^
Vector Algebra

87679 Let A(3,5,6) and B(4,6,3). Find ratio in which yz plane is dividing AB.

1 3:4 externally
2 3:4 internally
3 4:3 externally
4 4:3 internally
Vector Algebra

87661 If the position vectors of the vertices, A,B,C of a triangle ABC are 4i^+7j^+8k^,2i^+3j^+4k^ and 2i^+5j^+7k^ respectively, then the position vector of the point where bisector of angel A meets BC is

1 13(6i^+11j^+15k^)
2 14(8i^+14j^+19k^)
3 12(4i^+8j^+11k^)
4 13(6i^+13j^+18k^)
Vector Algebra

87662 In a quadrilateral ABCD,M and N are the midpoints of the sides AB and CD respectively. If AD+BC=tMN, then t=

1 12
2 32
3 2
4 4
Vector Algebra

87680 For 3 points A(a),B(b),C(c)
if 3a+2b5c=0, then

1 Point C divides AB externally in ratio 3:2
2 3 Points from ABC
3 C is not mid-point of AB
4 C divides AB internally in ratio 2:3
Vector Algebra

87660 If a=2i^+3j^+k^,b=4i^+5j^+3k^
and c=6i^+j^+5k^ are the position vectors of the vertices of triangle ABC respectively, then the position vector of the intersection of the medians of the triangle ABC is

1 2i^+3j^+3k^
2 4i^+3j^+3k^
3 5i^+3j^+3k^
4 3i^+3j^+4k^
Vector Algebra

87679 Let A(3,5,6) and B(4,6,3). Find ratio in which yz plane is dividing AB.

1 3:4 externally
2 3:4 internally
3 4:3 externally
4 4:3 internally
Vector Algebra

87661 If the position vectors of the vertices, A,B,C of a triangle ABC are 4i^+7j^+8k^,2i^+3j^+4k^ and 2i^+5j^+7k^ respectively, then the position vector of the point where bisector of angel A meets BC is

1 13(6i^+11j^+15k^)
2 14(8i^+14j^+19k^)
3 12(4i^+8j^+11k^)
4 13(6i^+13j^+18k^)
Vector Algebra

87662 In a quadrilateral ABCD,M and N are the midpoints of the sides AB and CD respectively. If AD+BC=tMN, then t=

1 12
2 32
3 2
4 4
Vector Algebra

87680 For 3 points A(a),B(b),C(c)
if 3a+2b5c=0, then

1 Point C divides AB externally in ratio 3:2
2 3 Points from ABC
3 C is not mid-point of AB
4 C divides AB internally in ratio 2:3
Vector Algebra

87660 If a=2i^+3j^+k^,b=4i^+5j^+3k^
and c=6i^+j^+5k^ are the position vectors of the vertices of triangle ABC respectively, then the position vector of the intersection of the medians of the triangle ABC is

1 2i^+3j^+3k^
2 4i^+3j^+3k^
3 5i^+3j^+3k^
4 3i^+3j^+4k^
Vector Algebra

87679 Let A(3,5,6) and B(4,6,3). Find ratio in which yz plane is dividing AB.

1 3:4 externally
2 3:4 internally
3 4:3 externally
4 4:3 internally
Vector Algebra

87661 If the position vectors of the vertices, A,B,C of a triangle ABC are 4i^+7j^+8k^,2i^+3j^+4k^ and 2i^+5j^+7k^ respectively, then the position vector of the point where bisector of angel A meets BC is

1 13(6i^+11j^+15k^)
2 14(8i^+14j^+19k^)
3 12(4i^+8j^+11k^)
4 13(6i^+13j^+18k^)
Vector Algebra

87662 In a quadrilateral ABCD,M and N are the midpoints of the sides AB and CD respectively. If AD+BC=tMN, then t=

1 12
2 32
3 2
4 4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87680 For 3 points A(a),B(b),C(c)
if 3a+2b5c=0, then

1 Point C divides AB externally in ratio 3:2
2 3 Points from ABC
3 C is not mid-point of AB
4 C divides AB internally in ratio 2:3
Vector Algebra

87660 If a=2i^+3j^+k^,b=4i^+5j^+3k^
and c=6i^+j^+5k^ are the position vectors of the vertices of triangle ABC respectively, then the position vector of the intersection of the medians of the triangle ABC is

1 2i^+3j^+3k^
2 4i^+3j^+3k^
3 5i^+3j^+3k^
4 3i^+3j^+4k^
Vector Algebra

87679 Let A(3,5,6) and B(4,6,3). Find ratio in which yz plane is dividing AB.

1 3:4 externally
2 3:4 internally
3 4:3 externally
4 4:3 internally
Vector Algebra

87661 If the position vectors of the vertices, A,B,C of a triangle ABC are 4i^+7j^+8k^,2i^+3j^+4k^ and 2i^+5j^+7k^ respectively, then the position vector of the point where bisector of angel A meets BC is

1 13(6i^+11j^+15k^)
2 14(8i^+14j^+19k^)
3 12(4i^+8j^+11k^)
4 13(6i^+13j^+18k^)
Vector Algebra

87662 In a quadrilateral ABCD,M and N are the midpoints of the sides AB and CD respectively. If AD+BC=tMN, then t=

1 12
2 32
3 2
4 4
Vector Algebra

87680 For 3 points A(a),B(b),C(c)
if 3a+2b5c=0, then

1 Point C divides AB externally in ratio 3:2
2 3 Points from ABC
3 C is not mid-point of AB
4 C divides AB internally in ratio 2:3
Vector Algebra

87660 If a=2i^+3j^+k^,b=4i^+5j^+3k^
and c=6i^+j^+5k^ are the position vectors of the vertices of triangle ABC respectively, then the position vector of the intersection of the medians of the triangle ABC is

1 2i^+3j^+3k^
2 4i^+3j^+3k^
3 5i^+3j^+3k^
4 3i^+3j^+4k^
Vector Algebra

87679 Let A(3,5,6) and B(4,6,3). Find ratio in which yz plane is dividing AB.

1 3:4 externally
2 3:4 internally
3 4:3 externally
4 4:3 internally
Vector Algebra

87661 If the position vectors of the vertices, A,B,C of a triangle ABC are 4i^+7j^+8k^,2i^+3j^+4k^ and 2i^+5j^+7k^ respectively, then the position vector of the point where bisector of angel A meets BC is

1 13(6i^+11j^+15k^)
2 14(8i^+14j^+19k^)
3 12(4i^+8j^+11k^)
4 13(6i^+13j^+18k^)
Vector Algebra

87662 In a quadrilateral ABCD,M and N are the midpoints of the sides AB and CD respectively. If AD+BC=tMN, then t=

1 12
2 32
3 2
4 4