87666 If \(a, b, c\) are lengths of the sides \(\mathbf{B C}, \mathbf{C A}, \mathbf{A B}\) respectively of \(\triangle A B C\) and \(H\) is any point in the plane of \(\triangle \mathrm{ABC}\) such that \(\mathrm{a}\) \(\mathbf{a A \vec { H }}+b \overrightarrow{B H}+c \overrightarrow{C H}=\overrightarrow{0}\), then \(H\) is the
87666 If \(a, b, c\) are lengths of the sides \(\mathbf{B C}, \mathbf{C A}, \mathbf{A B}\) respectively of \(\triangle A B C\) and \(H\) is any point in the plane of \(\triangle \mathrm{ABC}\) such that \(\mathrm{a}\) \(\mathbf{a A \vec { H }}+b \overrightarrow{B H}+c \overrightarrow{C H}=\overrightarrow{0}\), then \(H\) is the
87666 If \(a, b, c\) are lengths of the sides \(\mathbf{B C}, \mathbf{C A}, \mathbf{A B}\) respectively of \(\triangle A B C\) and \(H\) is any point in the plane of \(\triangle \mathrm{ABC}\) such that \(\mathrm{a}\) \(\mathbf{a A \vec { H }}+b \overrightarrow{B H}+c \overrightarrow{C H}=\overrightarrow{0}\), then \(H\) is the
87666 If \(a, b, c\) are lengths of the sides \(\mathbf{B C}, \mathbf{C A}, \mathbf{A B}\) respectively of \(\triangle A B C\) and \(H\) is any point in the plane of \(\triangle \mathrm{ABC}\) such that \(\mathrm{a}\) \(\mathbf{a A \vec { H }}+b \overrightarrow{B H}+c \overrightarrow{C H}=\overrightarrow{0}\), then \(H\) is the