Solution of Linear Differential Equation
Differential Equation

87562 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+..is

1 y=loge(x)+c
2 y=(logex)2+c
3 y=±(logex)2+2c
4 xy=xy+k
Differential Equation

87563 The solution of the differential equation dydx=sin(x+y)tan(x+y)1 is

1 cosec(x+y)+tan(x+y)=x+C
2 x+cosec(x+y)=C
3 x+tan(x+y)=C
4 x+sec(x+y)=C
Differential Equation

87565 Solution of the equation cos2xdydx(tan2x)y=cos4x,|x|<π4, where y(π6)=338, is given by

1 ytan2x1tan2x=0
2 y(1tan2x)=C
3 y=sin2x+C
4 y=12sin2x1tan2x
Differential Equation

87562 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+..is

1 y=loge(x)+c
2 y=(logex)2+c
3 y=±(logex)2+2c
4 xy=xy+k
Differential Equation

87563 The solution of the differential equation dydx=sin(x+y)tan(x+y)1 is

1 cosec(x+y)+tan(x+y)=x+C
2 x+cosec(x+y)=C
3 x+tan(x+y)=C
4 x+sec(x+y)=C
Differential Equation

87564 The solution of differential equation
(ylogx1)ydx=xdy is

1 y(logex+Cx)=1
2 (logxe+Cx)x=y
3 (logCx2+ex2)y=x
4 None of these
Differential Equation

87565 Solution of the equation cos2xdydx(tan2x)y=cos4x,|x|<π4, where y(π6)=338, is given by

1 ytan2x1tan2x=0
2 y(1tan2x)=C
3 y=sin2x+C
4 y=12sin2x1tan2x
Differential Equation

87562 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+..is

1 y=loge(x)+c
2 y=(logex)2+c
3 y=±(logex)2+2c
4 xy=xy+k
Differential Equation

87563 The solution of the differential equation dydx=sin(x+y)tan(x+y)1 is

1 cosec(x+y)+tan(x+y)=x+C
2 x+cosec(x+y)=C
3 x+tan(x+y)=C
4 x+sec(x+y)=C
Differential Equation

87564 The solution of differential equation
(ylogx1)ydx=xdy is

1 y(logex+Cx)=1
2 (logxe+Cx)x=y
3 (logCx2+ex2)y=x
4 None of these
Differential Equation

87565 Solution of the equation cos2xdydx(tan2x)y=cos4x,|x|<π4, where y(π6)=338, is given by

1 ytan2x1tan2x=0
2 y(1tan2x)=C
3 y=sin2x+C
4 y=12sin2x1tan2x
Differential Equation

87562 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+..is

1 y=loge(x)+c
2 y=(logex)2+c
3 y=±(logex)2+2c
4 xy=xy+k
Differential Equation

87563 The solution of the differential equation dydx=sin(x+y)tan(x+y)1 is

1 cosec(x+y)+tan(x+y)=x+C
2 x+cosec(x+y)=C
3 x+tan(x+y)=C
4 x+sec(x+y)=C
Differential Equation

87564 The solution of differential equation
(ylogx1)ydx=xdy is

1 y(logex+Cx)=1
2 (logxe+Cx)x=y
3 (logCx2+ex2)y=x
4 None of these
Differential Equation

87565 Solution of the equation cos2xdydx(tan2x)y=cos4x,|x|<π4, where y(π6)=338, is given by

1 ytan2x1tan2x=0
2 y(1tan2x)=C
3 y=sin2x+C
4 y=12sin2x1tan2x