87562 Solution of the differential equationx=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+…..is
(C) : The given differential equation can be written as-x=exydydxlogx=xydydxydy=logxxdxydy=logxd(logx)On integrating, we get-y22=(logx)22+cy2=(logex)2+2cy=±(logex)2+2c
87563 The solution of the differential equation dydx=sin(x+y)tan(x+y)−1 is
(B) : We have,dydx=sin(x+y)tan(x+y)−1Put, x+y=v, we get-1+dydx=dvdxdydx=dvdx−1Equation (i) reducing to,dvdx=sinvtanvdvsinvtanv=dx∫cosecvcotvdv=∫dx−cosecvcotv=x+C−cosec(x+y)=x+Cx+cosec(x+y)=C
87564 The solution of differential equation(ylogx−1)ydx=xdy is
(D) : Given differential equation is:-(ylogx−1)ydx=xdydydx=(ylogx−1)yxdydx=y2logxx−yxdydx+yx=y2logxx1y2dydx+y−1x=logxxPut,y−1=v−y−2dydx=dvdxy−2dydx=−dvdxFrom Eqn (i), we have:-−dvdx+vx=logxx⇒dydx−vx=−logxxHereP=−1x,Q=−logxxI⋅F⋅=e∫−1xdx=e−logx=1xSo,v⋅1x=∫1x(−logxx)dx+C=−[logx(−1x)+∫1x⋅1xdx]+C1x⋅y=logxx+1x+C[∵v=1y]1=y[logx+1+Cx]1=y[logx+loge+Cx]1=y[log(e⋅x)+cx]
87565 Solution of the equation cos2xdydx−(tan2x)y=cos4x,|x|<π4, where y(π6)=338, is given by
(D) :cos2xdydx−(tan2x)y=cos4xSimilar as:-dydx−(tan2xcos2x)y=cos2xdydx+py=θ I.F. =e∫PdxNow,∫Pdx=−∫tan2xcos2xdx∴=−∫2sin2xcos2x(1+cos2x)Let, cos2x=t−2sin2xdx=dtSo, ∫Pdx=∫dtt(t+1)=∫t+1−tt(t+1)dt=∫dtt−∫dtt+1=ln|t|−ln|t+1|=ln|tt+1|=ln|cos2x1+cos2x|So, ln|cos2x1+cos2x|I.F =ecos2x1+cos2xNow, solution is:-Y⋅I⋅F⋅=∫I⋅F⋅xθdx+cy×cos2x1+cos2x=∫cos2x1+cos2x×cos2xdx+C=∫cos2x2cos2x×cos2xdx+C=12∫cos2xdx+C=12×sin2x2+C⇒y(cos2x1+cos2x)=12sin2x2+CNow,y(π6)=338 means:-at x=π6,y=338So, from (i) :-338×1/21+1/2=32×4+C338×(13)=38+CC=38−38C=0Now,Eqn (i) be comes:-y(cos2xcos2x+1)=14sin2x+0y=14sin2xcos2xcos2x+1=14sin2xcos2x−sin2x2cos2xy=12⋅sin2x1−tan2x