Solution of Linear Differential Equation
Differential Equation

87566 The curve, for which the area of the triangle formed by \(\mathrm{X}\)-axis, the tangent line at any point \(P\) and line OP is equal to \(a^{2}\), is given by

1 \(y=x-C x^{2}\)
2 \(x=C y \pm \frac{a^{2}}{y}\)
3 \(y=C x \pm \frac{a^{2}}{x}\)
4 None of these
Differential Equation

87567 The general solution of the differential equation
\(x \cos \frac{y}{x}(y d x+x d y)=y \sin \frac{y}{x}(x d y-y d x)\) is

1 \(\log (x y)=\log \cos \frac{x}{y}+C\)
2 \(\cos \left(\frac{y}{x}\right)=\frac{C}{x y}\)
3 \(\log (x y)=\log \sec \frac{x}{y}+C\)
4 \(x+y+C=0\)
Differential Equation

87568 Solution of the differential equation \(y^{\prime}=\) \(\frac{\left(x^{2}+y^{2}\right)}{x y}, y(1)=-2\) is given by

1 \(y_{2}^{2}=x^{2} \log x^{2}+4 x^{2}\)
2 \(y_{2}^{2}=x^{2} \log x-x^{2}\)
3 \(y^{2} x \log x^{2}+4 x^{2}\)
4 \(y^2=4 x^2 \log x^2+x^2\)
Differential Equation

87569 The solution of the differential equation \(x \frac{d y}{d x}+y=\frac{1}{x^{2}}\) at \((1,2)\) is

1 \(x^{2} y+1=3 x\)
2 \(x^{2} y+1=0\)
3 \(x y+1=3 x\)
4 \(x^{2}(y+1)=3 x\)
5 \(x^{2} y=3 x+1\)
Differential Equation

87570 The general solution of the differential equation \(\frac{d y}{d x}=e^{y}\left(e^{x}+e^{-x}+2 x\right)\) is

1 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{-\mathrm{y}}=-\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
5 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}+\mathrm{C}\)
Differential Equation

87566 The curve, for which the area of the triangle formed by \(\mathrm{X}\)-axis, the tangent line at any point \(P\) and line OP is equal to \(a^{2}\), is given by

1 \(y=x-C x^{2}\)
2 \(x=C y \pm \frac{a^{2}}{y}\)
3 \(y=C x \pm \frac{a^{2}}{x}\)
4 None of these
Differential Equation

87567 The general solution of the differential equation
\(x \cos \frac{y}{x}(y d x+x d y)=y \sin \frac{y}{x}(x d y-y d x)\) is

1 \(\log (x y)=\log \cos \frac{x}{y}+C\)
2 \(\cos \left(\frac{y}{x}\right)=\frac{C}{x y}\)
3 \(\log (x y)=\log \sec \frac{x}{y}+C\)
4 \(x+y+C=0\)
Differential Equation

87568 Solution of the differential equation \(y^{\prime}=\) \(\frac{\left(x^{2}+y^{2}\right)}{x y}, y(1)=-2\) is given by

1 \(y_{2}^{2}=x^{2} \log x^{2}+4 x^{2}\)
2 \(y_{2}^{2}=x^{2} \log x-x^{2}\)
3 \(y^{2} x \log x^{2}+4 x^{2}\)
4 \(y^2=4 x^2 \log x^2+x^2\)
Differential Equation

87569 The solution of the differential equation \(x \frac{d y}{d x}+y=\frac{1}{x^{2}}\) at \((1,2)\) is

1 \(x^{2} y+1=3 x\)
2 \(x^{2} y+1=0\)
3 \(x y+1=3 x\)
4 \(x^{2}(y+1)=3 x\)
5 \(x^{2} y=3 x+1\)
Differential Equation

87570 The general solution of the differential equation \(\frac{d y}{d x}=e^{y}\left(e^{x}+e^{-x}+2 x\right)\) is

1 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{-\mathrm{y}}=-\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
5 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}+\mathrm{C}\)
Differential Equation

87566 The curve, for which the area of the triangle formed by \(\mathrm{X}\)-axis, the tangent line at any point \(P\) and line OP is equal to \(a^{2}\), is given by

1 \(y=x-C x^{2}\)
2 \(x=C y \pm \frac{a^{2}}{y}\)
3 \(y=C x \pm \frac{a^{2}}{x}\)
4 None of these
Differential Equation

87567 The general solution of the differential equation
\(x \cos \frac{y}{x}(y d x+x d y)=y \sin \frac{y}{x}(x d y-y d x)\) is

1 \(\log (x y)=\log \cos \frac{x}{y}+C\)
2 \(\cos \left(\frac{y}{x}\right)=\frac{C}{x y}\)
3 \(\log (x y)=\log \sec \frac{x}{y}+C\)
4 \(x+y+C=0\)
Differential Equation

87568 Solution of the differential equation \(y^{\prime}=\) \(\frac{\left(x^{2}+y^{2}\right)}{x y}, y(1)=-2\) is given by

1 \(y_{2}^{2}=x^{2} \log x^{2}+4 x^{2}\)
2 \(y_{2}^{2}=x^{2} \log x-x^{2}\)
3 \(y^{2} x \log x^{2}+4 x^{2}\)
4 \(y^2=4 x^2 \log x^2+x^2\)
Differential Equation

87569 The solution of the differential equation \(x \frac{d y}{d x}+y=\frac{1}{x^{2}}\) at \((1,2)\) is

1 \(x^{2} y+1=3 x\)
2 \(x^{2} y+1=0\)
3 \(x y+1=3 x\)
4 \(x^{2}(y+1)=3 x\)
5 \(x^{2} y=3 x+1\)
Differential Equation

87570 The general solution of the differential equation \(\frac{d y}{d x}=e^{y}\left(e^{x}+e^{-x}+2 x\right)\) is

1 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{-\mathrm{y}}=-\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
5 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}+\mathrm{C}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87566 The curve, for which the area of the triangle formed by \(\mathrm{X}\)-axis, the tangent line at any point \(P\) and line OP is equal to \(a^{2}\), is given by

1 \(y=x-C x^{2}\)
2 \(x=C y \pm \frac{a^{2}}{y}\)
3 \(y=C x \pm \frac{a^{2}}{x}\)
4 None of these
Differential Equation

87567 The general solution of the differential equation
\(x \cos \frac{y}{x}(y d x+x d y)=y \sin \frac{y}{x}(x d y-y d x)\) is

1 \(\log (x y)=\log \cos \frac{x}{y}+C\)
2 \(\cos \left(\frac{y}{x}\right)=\frac{C}{x y}\)
3 \(\log (x y)=\log \sec \frac{x}{y}+C\)
4 \(x+y+C=0\)
Differential Equation

87568 Solution of the differential equation \(y^{\prime}=\) \(\frac{\left(x^{2}+y^{2}\right)}{x y}, y(1)=-2\) is given by

1 \(y_{2}^{2}=x^{2} \log x^{2}+4 x^{2}\)
2 \(y_{2}^{2}=x^{2} \log x-x^{2}\)
3 \(y^{2} x \log x^{2}+4 x^{2}\)
4 \(y^2=4 x^2 \log x^2+x^2\)
Differential Equation

87569 The solution of the differential equation \(x \frac{d y}{d x}+y=\frac{1}{x^{2}}\) at \((1,2)\) is

1 \(x^{2} y+1=3 x\)
2 \(x^{2} y+1=0\)
3 \(x y+1=3 x\)
4 \(x^{2}(y+1)=3 x\)
5 \(x^{2} y=3 x+1\)
Differential Equation

87570 The general solution of the differential equation \(\frac{d y}{d x}=e^{y}\left(e^{x}+e^{-x}+2 x\right)\) is

1 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{-\mathrm{y}}=-\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
5 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}+\mathrm{C}\)
Differential Equation

87566 The curve, for which the area of the triangle formed by \(\mathrm{X}\)-axis, the tangent line at any point \(P\) and line OP is equal to \(a^{2}\), is given by

1 \(y=x-C x^{2}\)
2 \(x=C y \pm \frac{a^{2}}{y}\)
3 \(y=C x \pm \frac{a^{2}}{x}\)
4 None of these
Differential Equation

87567 The general solution of the differential equation
\(x \cos \frac{y}{x}(y d x+x d y)=y \sin \frac{y}{x}(x d y-y d x)\) is

1 \(\log (x y)=\log \cos \frac{x}{y}+C\)
2 \(\cos \left(\frac{y}{x}\right)=\frac{C}{x y}\)
3 \(\log (x y)=\log \sec \frac{x}{y}+C\)
4 \(x+y+C=0\)
Differential Equation

87568 Solution of the differential equation \(y^{\prime}=\) \(\frac{\left(x^{2}+y^{2}\right)}{x y}, y(1)=-2\) is given by

1 \(y_{2}^{2}=x^{2} \log x^{2}+4 x^{2}\)
2 \(y_{2}^{2}=x^{2} \log x-x^{2}\)
3 \(y^{2} x \log x^{2}+4 x^{2}\)
4 \(y^2=4 x^2 \log x^2+x^2\)
Differential Equation

87569 The solution of the differential equation \(x \frac{d y}{d x}+y=\frac{1}{x^{2}}\) at \((1,2)\) is

1 \(x^{2} y+1=3 x\)
2 \(x^{2} y+1=0\)
3 \(x y+1=3 x\)
4 \(x^{2}(y+1)=3 x\)
5 \(x^{2} y=3 x+1\)
Differential Equation

87570 The general solution of the differential equation \(\frac{d y}{d x}=e^{y}\left(e^{x}+e^{-x}+2 x\right)\) is

1 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{-\mathrm{y}}=-\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}-\mathrm{x}^{2}+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{\mathrm{x}}+\mathrm{x}^{2}+\mathrm{C}\)
5 \(\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}+\mathrm{C}\)