Solution of Linear Differential Equation
Differential Equation

87562 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots . . i s\)

1 \(y=\log _{e}(x)+c\)
2 \(y=\left(\log _{e} x\right)^{2}+c\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 c}\)
4 \(x y=x^{y}+k\)
Differential Equation

87563 The solution of the differential equation \(\frac{d y}{d x}=\sin (x+y) \tan (x+y)-1\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+C\)
2 \(x+\operatorname{cosec}(x+y)=C\)
3 \(x+\tan (x+y)=C\)
4 \(x+\sec (x+y)=C\)
Differential Equation

87564 The solution of differential equation
\((y \log x-1) y d x=x d y\) is

1 \(y\left(\log e^{x}+C x\right)=1\)
2 \(\left(\log \frac{x}{e}+C x\right) x=y\)
3 \(\left(\log C x^{2}+e x^{2}\right) y=x\)
4 None of these
Differential Equation

87565 Solution of the equation \(\cos ^{2} x \frac{d y}{d x}-(\tan 2 x) y=\cos ^{4} x,|x|\lt \frac{\pi}{4}\), where \(y\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{8}\), is given by

1 \(y \frac{\tan 2 x}{1-\tan ^{2} x}=0\)
2 \(y\left(1-\tan ^{2} x\right)=C\)
3 \(y=\sin 2 x+C\)
4 \(y=\frac{1}{2} \cdot \frac{\sin 2 x}{1-\tan ^{2} x}\)
Differential Equation

87562 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots . . i s\)

1 \(y=\log _{e}(x)+c\)
2 \(y=\left(\log _{e} x\right)^{2}+c\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 c}\)
4 \(x y=x^{y}+k\)
Differential Equation

87563 The solution of the differential equation \(\frac{d y}{d x}=\sin (x+y) \tan (x+y)-1\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+C\)
2 \(x+\operatorname{cosec}(x+y)=C\)
3 \(x+\tan (x+y)=C\)
4 \(x+\sec (x+y)=C\)
Differential Equation

87564 The solution of differential equation
\((y \log x-1) y d x=x d y\) is

1 \(y\left(\log e^{x}+C x\right)=1\)
2 \(\left(\log \frac{x}{e}+C x\right) x=y\)
3 \(\left(\log C x^{2}+e x^{2}\right) y=x\)
4 None of these
Differential Equation

87565 Solution of the equation \(\cos ^{2} x \frac{d y}{d x}-(\tan 2 x) y=\cos ^{4} x,|x|\lt \frac{\pi}{4}\), where \(y\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{8}\), is given by

1 \(y \frac{\tan 2 x}{1-\tan ^{2} x}=0\)
2 \(y\left(1-\tan ^{2} x\right)=C\)
3 \(y=\sin 2 x+C\)
4 \(y=\frac{1}{2} \cdot \frac{\sin 2 x}{1-\tan ^{2} x}\)
Differential Equation

87562 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots . . i s\)

1 \(y=\log _{e}(x)+c\)
2 \(y=\left(\log _{e} x\right)^{2}+c\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 c}\)
4 \(x y=x^{y}+k\)
Differential Equation

87563 The solution of the differential equation \(\frac{d y}{d x}=\sin (x+y) \tan (x+y)-1\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+C\)
2 \(x+\operatorname{cosec}(x+y)=C\)
3 \(x+\tan (x+y)=C\)
4 \(x+\sec (x+y)=C\)
Differential Equation

87564 The solution of differential equation
\((y \log x-1) y d x=x d y\) is

1 \(y\left(\log e^{x}+C x\right)=1\)
2 \(\left(\log \frac{x}{e}+C x\right) x=y\)
3 \(\left(\log C x^{2}+e x^{2}\right) y=x\)
4 None of these
Differential Equation

87565 Solution of the equation \(\cos ^{2} x \frac{d y}{d x}-(\tan 2 x) y=\cos ^{4} x,|x|\lt \frac{\pi}{4}\), where \(y\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{8}\), is given by

1 \(y \frac{\tan 2 x}{1-\tan ^{2} x}=0\)
2 \(y\left(1-\tan ^{2} x\right)=C\)
3 \(y=\sin 2 x+C\)
4 \(y=\frac{1}{2} \cdot \frac{\sin 2 x}{1-\tan ^{2} x}\)
Differential Equation

87562 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots . . i s\)

1 \(y=\log _{e}(x)+c\)
2 \(y=\left(\log _{e} x\right)^{2}+c\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 c}\)
4 \(x y=x^{y}+k\)
Differential Equation

87563 The solution of the differential equation \(\frac{d y}{d x}=\sin (x+y) \tan (x+y)-1\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+C\)
2 \(x+\operatorname{cosec}(x+y)=C\)
3 \(x+\tan (x+y)=C\)
4 \(x+\sec (x+y)=C\)
Differential Equation

87564 The solution of differential equation
\((y \log x-1) y d x=x d y\) is

1 \(y\left(\log e^{x}+C x\right)=1\)
2 \(\left(\log \frac{x}{e}+C x\right) x=y\)
3 \(\left(\log C x^{2}+e x^{2}\right) y=x\)
4 None of these
Differential Equation

87565 Solution of the equation \(\cos ^{2} x \frac{d y}{d x}-(\tan 2 x) y=\cos ^{4} x,|x|\lt \frac{\pi}{4}\), where \(y\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{8}\), is given by

1 \(y \frac{\tan 2 x}{1-\tan ^{2} x}=0\)
2 \(y\left(1-\tan ^{2} x\right)=C\)
3 \(y=\sin 2 x+C\)
4 \(y=\frac{1}{2} \cdot \frac{\sin 2 x}{1-\tan ^{2} x}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here