Homogeneous Differential Equation
Differential Equation

87503 The solution of \( \left(x^{2}+y^{2}\right) d x=2 x y d y, y(1)=0 \) is

1 \( x^{2}-y^{2}=x \)
2 \( x^{2}+y^{2}=x \)
3 \( \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}+\frac{1}{\mathrm{x}}=0 \)
4 \( \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}-\frac{1}{\mathrm{x}}=0 \)
Differential Equation

87504 In order to solve the differential equation
\(x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1\)
The integrating factor is :

1 \(x \cos x\)
2 \(x \sec x\)
3 \(x \sin x\)
4 \(x \operatorname{cosec} x\)
Differential Equation

87505 The solution of the differential equation
\((x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}\) is

1 \(y=(x+1) e^{3 x}+c\)
2 \(3 y=(x+1)+e^{3 x}+c\)
3 \(\frac{3 y}{x+1}=e^{3 x}+c\)
4 \(\mathrm{ye}^{-3 \mathrm{x}}=3(\mathrm{x}+1)+\mathrm{c}\)
Differential Equation

87507 The differential equation of the family of parabolas \(\mathrm{y}^{2}=4 \mathrm{ax}\), where \(\mathrm{a}\) is parameter, is

1 \(\frac{d y}{d x}=\frac{y}{2 x}\)
2 \(\frac{d y}{d x}=-\frac{y}{2 x}\)
3 \(\frac{d y}{d x}=-\frac{2 y}{x}\)
4 \(\frac{d y}{d x}=\frac{2 y}{x}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87503 The solution of \( \left(x^{2}+y^{2}\right) d x=2 x y d y, y(1)=0 \) is

1 \( x^{2}-y^{2}=x \)
2 \( x^{2}+y^{2}=x \)
3 \( \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}+\frac{1}{\mathrm{x}}=0 \)
4 \( \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}-\frac{1}{\mathrm{x}}=0 \)
Differential Equation

87504 In order to solve the differential equation
\(x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1\)
The integrating factor is :

1 \(x \cos x\)
2 \(x \sec x\)
3 \(x \sin x\)
4 \(x \operatorname{cosec} x\)
Differential Equation

87505 The solution of the differential equation
\((x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}\) is

1 \(y=(x+1) e^{3 x}+c\)
2 \(3 y=(x+1)+e^{3 x}+c\)
3 \(\frac{3 y}{x+1}=e^{3 x}+c\)
4 \(\mathrm{ye}^{-3 \mathrm{x}}=3(\mathrm{x}+1)+\mathrm{c}\)
Differential Equation

87507 The differential equation of the family of parabolas \(\mathrm{y}^{2}=4 \mathrm{ax}\), where \(\mathrm{a}\) is parameter, is

1 \(\frac{d y}{d x}=\frac{y}{2 x}\)
2 \(\frac{d y}{d x}=-\frac{y}{2 x}\)
3 \(\frac{d y}{d x}=-\frac{2 y}{x}\)
4 \(\frac{d y}{d x}=\frac{2 y}{x}\)
Differential Equation

87503 The solution of \( \left(x^{2}+y^{2}\right) d x=2 x y d y, y(1)=0 \) is

1 \( x^{2}-y^{2}=x \)
2 \( x^{2}+y^{2}=x \)
3 \( \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}+\frac{1}{\mathrm{x}}=0 \)
4 \( \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}-\frac{1}{\mathrm{x}}=0 \)
Differential Equation

87504 In order to solve the differential equation
\(x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1\)
The integrating factor is :

1 \(x \cos x\)
2 \(x \sec x\)
3 \(x \sin x\)
4 \(x \operatorname{cosec} x\)
Differential Equation

87505 The solution of the differential equation
\((x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}\) is

1 \(y=(x+1) e^{3 x}+c\)
2 \(3 y=(x+1)+e^{3 x}+c\)
3 \(\frac{3 y}{x+1}=e^{3 x}+c\)
4 \(\mathrm{ye}^{-3 \mathrm{x}}=3(\mathrm{x}+1)+\mathrm{c}\)
Differential Equation

87507 The differential equation of the family of parabolas \(\mathrm{y}^{2}=4 \mathrm{ax}\), where \(\mathrm{a}\) is parameter, is

1 \(\frac{d y}{d x}=\frac{y}{2 x}\)
2 \(\frac{d y}{d x}=-\frac{y}{2 x}\)
3 \(\frac{d y}{d x}=-\frac{2 y}{x}\)
4 \(\frac{d y}{d x}=\frac{2 y}{x}\)
Differential Equation

87503 The solution of \( \left(x^{2}+y^{2}\right) d x=2 x y d y, y(1)=0 \) is

1 \( x^{2}-y^{2}=x \)
2 \( x^{2}+y^{2}=x \)
3 \( \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}+\frac{1}{\mathrm{x}}=0 \)
4 \( \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}-\frac{1}{\mathrm{x}}=0 \)
Differential Equation

87504 In order to solve the differential equation
\(x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1\)
The integrating factor is :

1 \(x \cos x\)
2 \(x \sec x\)
3 \(x \sin x\)
4 \(x \operatorname{cosec} x\)
Differential Equation

87505 The solution of the differential equation
\((x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}\) is

1 \(y=(x+1) e^{3 x}+c\)
2 \(3 y=(x+1)+e^{3 x}+c\)
3 \(\frac{3 y}{x+1}=e^{3 x}+c\)
4 \(\mathrm{ye}^{-3 \mathrm{x}}=3(\mathrm{x}+1)+\mathrm{c}\)
Differential Equation

87507 The differential equation of the family of parabolas \(\mathrm{y}^{2}=4 \mathrm{ax}\), where \(\mathrm{a}\) is parameter, is

1 \(\frac{d y}{d x}=\frac{y}{2 x}\)
2 \(\frac{d y}{d x}=-\frac{y}{2 x}\)
3 \(\frac{d y}{d x}=-\frac{2 y}{x}\)
4 \(\frac{d y}{d x}=\frac{2 y}{x}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here