Homogeneous Differential Equation
Differential Equation

87499 The integrating factor of \(\left(y e^{y}\right) d x=\left(y^{3}+2 x e^{y}\right) d y\) is

1 \(\frac{1}{y^{2}}\)
2 \(y^{2}\)
3 \(\frac{1}{\mathrm{x}^{2}}\)
4 \(x^{2}\)
Differential Equation

87500 The integrating factor of the differential equation \(\left(1+y^{2}\right) d x+\left(x-e^{-\tan ^{-1} y}\right) d y=0\)

1 \(\mathrm{e}^{\tan ^{-1} y}\)
2 \(\mathrm{ye}^{\tan ^{-1} y}\)
3 \(-\mathrm{ye}^{\tan ^{-1} y}\)
4 \(\mathrm{xe}^{\tan ^{-1} \mathrm{y}}\)
Differential Equation

87501 If \(\sin x\) is integrating factor (I.F.) of the linear differential equation \(\frac{d y}{d x}+P y=Q\), then \(P\) is

1 \(\log \sin x\)
2 \(\cos x\)
3 \(\tan x\)
4 \(\cot x\)
Differential Equation

87502 The integrating factor of the differential equation \(\frac{d y}{d x}(x \log x)+y=2 \log x\) is given by

1 \(e^{\mathrm{x}}\)
2 \(\log x\)
3 \(\log (\log x)\)
4 \(x\)
Differential Equation

87499 The integrating factor of \(\left(y e^{y}\right) d x=\left(y^{3}+2 x e^{y}\right) d y\) is

1 \(\frac{1}{y^{2}}\)
2 \(y^{2}\)
3 \(\frac{1}{\mathrm{x}^{2}}\)
4 \(x^{2}\)
Differential Equation

87500 The integrating factor of the differential equation \(\left(1+y^{2}\right) d x+\left(x-e^{-\tan ^{-1} y}\right) d y=0\)

1 \(\mathrm{e}^{\tan ^{-1} y}\)
2 \(\mathrm{ye}^{\tan ^{-1} y}\)
3 \(-\mathrm{ye}^{\tan ^{-1} y}\)
4 \(\mathrm{xe}^{\tan ^{-1} \mathrm{y}}\)
Differential Equation

87501 If \(\sin x\) is integrating factor (I.F.) of the linear differential equation \(\frac{d y}{d x}+P y=Q\), then \(P\) is

1 \(\log \sin x\)
2 \(\cos x\)
3 \(\tan x\)
4 \(\cot x\)
Differential Equation

87502 The integrating factor of the differential equation \(\frac{d y}{d x}(x \log x)+y=2 \log x\) is given by

1 \(e^{\mathrm{x}}\)
2 \(\log x\)
3 \(\log (\log x)\)
4 \(x\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87499 The integrating factor of \(\left(y e^{y}\right) d x=\left(y^{3}+2 x e^{y}\right) d y\) is

1 \(\frac{1}{y^{2}}\)
2 \(y^{2}\)
3 \(\frac{1}{\mathrm{x}^{2}}\)
4 \(x^{2}\)
Differential Equation

87500 The integrating factor of the differential equation \(\left(1+y^{2}\right) d x+\left(x-e^{-\tan ^{-1} y}\right) d y=0\)

1 \(\mathrm{e}^{\tan ^{-1} y}\)
2 \(\mathrm{ye}^{\tan ^{-1} y}\)
3 \(-\mathrm{ye}^{\tan ^{-1} y}\)
4 \(\mathrm{xe}^{\tan ^{-1} \mathrm{y}}\)
Differential Equation

87501 If \(\sin x\) is integrating factor (I.F.) of the linear differential equation \(\frac{d y}{d x}+P y=Q\), then \(P\) is

1 \(\log \sin x\)
2 \(\cos x\)
3 \(\tan x\)
4 \(\cot x\)
Differential Equation

87502 The integrating factor of the differential equation \(\frac{d y}{d x}(x \log x)+y=2 \log x\) is given by

1 \(e^{\mathrm{x}}\)
2 \(\log x\)
3 \(\log (\log x)\)
4 \(x\)
Differential Equation

87499 The integrating factor of \(\left(y e^{y}\right) d x=\left(y^{3}+2 x e^{y}\right) d y\) is

1 \(\frac{1}{y^{2}}\)
2 \(y^{2}\)
3 \(\frac{1}{\mathrm{x}^{2}}\)
4 \(x^{2}\)
Differential Equation

87500 The integrating factor of the differential equation \(\left(1+y^{2}\right) d x+\left(x-e^{-\tan ^{-1} y}\right) d y=0\)

1 \(\mathrm{e}^{\tan ^{-1} y}\)
2 \(\mathrm{ye}^{\tan ^{-1} y}\)
3 \(-\mathrm{ye}^{\tan ^{-1} y}\)
4 \(\mathrm{xe}^{\tan ^{-1} \mathrm{y}}\)
Differential Equation

87501 If \(\sin x\) is integrating factor (I.F.) of the linear differential equation \(\frac{d y}{d x}+P y=Q\), then \(P\) is

1 \(\log \sin x\)
2 \(\cos x\)
3 \(\tan x\)
4 \(\cot x\)
Differential Equation

87502 The integrating factor of the differential equation \(\frac{d y}{d x}(x \log x)+y=2 \log x\) is given by

1 \(e^{\mathrm{x}}\)
2 \(\log x\)
3 \(\log (\log x)\)
4 \(x\)