Integrating Factor
Differential Equation

87301 The solution of \(\tan \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\sin (\mathrm{x}+\mathrm{y})+\sin (\mathrm{x}-\mathrm{y})\) is

1 \(\sec y=2 \cos x+c\)
2 \(\sec y=-2 \cos x+c\)
3 \(\tan y=-2 \cos x+c\)
4 \(\sec ^{2} y=-2 \cos x+c\)
Differential Equation

87302 The solution of the differential equation \(\frac{d y}{d x}\) \(\boldsymbol{\operatorname { s i n }}(\mathrm{x}+\mathrm{y}) \boldsymbol{\operatorname { t a n }}(\mathrm{x}+\mathrm{y})-\mathbf{1}\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+c\)
2 \(x+\operatorname{cosec}(x+y)=c\)
3 \(x+\tan (x+y)=c\)
4 \(x+\sec (x+y)=c\)
Differential Equation

87303 The solution of \(\frac{d x}{d y}+\frac{x}{y}=x^{2}\) is:

1 \(\frac{1}{y}=c x-x \log x\)
2 \(\frac{1}{x}=c y-y \log y\)
3 \(\frac{1}{\mathrm{x}}=\mathrm{cx}+\mathrm{x} \log \mathrm{y}\)
4 \(\frac{1}{y}=c x-y \log x\)
Differential Equation

87304 The solution of \(\frac{d y}{d x}+1=e^{x+y}\) is

1 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}+\mathrm{c}=0\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}-\mathrm{x}+\mathrm{c}=0\)
3 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}+\mathrm{c}=0\)
4 \(e^{x+y}-x+c=0\)
Differential Equation

87306 An integrating facto of the equation
\(\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0 \text { is }\)

1 \(e^{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(x\)
Differential Equation

87301 The solution of \(\tan \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\sin (\mathrm{x}+\mathrm{y})+\sin (\mathrm{x}-\mathrm{y})\) is

1 \(\sec y=2 \cos x+c\)
2 \(\sec y=-2 \cos x+c\)
3 \(\tan y=-2 \cos x+c\)
4 \(\sec ^{2} y=-2 \cos x+c\)
Differential Equation

87302 The solution of the differential equation \(\frac{d y}{d x}\) \(\boldsymbol{\operatorname { s i n }}(\mathrm{x}+\mathrm{y}) \boldsymbol{\operatorname { t a n }}(\mathrm{x}+\mathrm{y})-\mathbf{1}\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+c\)
2 \(x+\operatorname{cosec}(x+y)=c\)
3 \(x+\tan (x+y)=c\)
4 \(x+\sec (x+y)=c\)
Differential Equation

87303 The solution of \(\frac{d x}{d y}+\frac{x}{y}=x^{2}\) is:

1 \(\frac{1}{y}=c x-x \log x\)
2 \(\frac{1}{x}=c y-y \log y\)
3 \(\frac{1}{\mathrm{x}}=\mathrm{cx}+\mathrm{x} \log \mathrm{y}\)
4 \(\frac{1}{y}=c x-y \log x\)
Differential Equation

87304 The solution of \(\frac{d y}{d x}+1=e^{x+y}\) is

1 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}+\mathrm{c}=0\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}-\mathrm{x}+\mathrm{c}=0\)
3 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}+\mathrm{c}=0\)
4 \(e^{x+y}-x+c=0\)
Differential Equation

87306 An integrating facto of the equation
\(\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0 \text { is }\)

1 \(e^{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(x\)
Differential Equation

87301 The solution of \(\tan \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\sin (\mathrm{x}+\mathrm{y})+\sin (\mathrm{x}-\mathrm{y})\) is

1 \(\sec y=2 \cos x+c\)
2 \(\sec y=-2 \cos x+c\)
3 \(\tan y=-2 \cos x+c\)
4 \(\sec ^{2} y=-2 \cos x+c\)
Differential Equation

87302 The solution of the differential equation \(\frac{d y}{d x}\) \(\boldsymbol{\operatorname { s i n }}(\mathrm{x}+\mathrm{y}) \boldsymbol{\operatorname { t a n }}(\mathrm{x}+\mathrm{y})-\mathbf{1}\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+c\)
2 \(x+\operatorname{cosec}(x+y)=c\)
3 \(x+\tan (x+y)=c\)
4 \(x+\sec (x+y)=c\)
Differential Equation

87303 The solution of \(\frac{d x}{d y}+\frac{x}{y}=x^{2}\) is:

1 \(\frac{1}{y}=c x-x \log x\)
2 \(\frac{1}{x}=c y-y \log y\)
3 \(\frac{1}{\mathrm{x}}=\mathrm{cx}+\mathrm{x} \log \mathrm{y}\)
4 \(\frac{1}{y}=c x-y \log x\)
Differential Equation

87304 The solution of \(\frac{d y}{d x}+1=e^{x+y}\) is

1 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}+\mathrm{c}=0\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}-\mathrm{x}+\mathrm{c}=0\)
3 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}+\mathrm{c}=0\)
4 \(e^{x+y}-x+c=0\)
Differential Equation

87306 An integrating facto of the equation
\(\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0 \text { is }\)

1 \(e^{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(x\)
Differential Equation

87301 The solution of \(\tan \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\sin (\mathrm{x}+\mathrm{y})+\sin (\mathrm{x}-\mathrm{y})\) is

1 \(\sec y=2 \cos x+c\)
2 \(\sec y=-2 \cos x+c\)
3 \(\tan y=-2 \cos x+c\)
4 \(\sec ^{2} y=-2 \cos x+c\)
Differential Equation

87302 The solution of the differential equation \(\frac{d y}{d x}\) \(\boldsymbol{\operatorname { s i n }}(\mathrm{x}+\mathrm{y}) \boldsymbol{\operatorname { t a n }}(\mathrm{x}+\mathrm{y})-\mathbf{1}\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+c\)
2 \(x+\operatorname{cosec}(x+y)=c\)
3 \(x+\tan (x+y)=c\)
4 \(x+\sec (x+y)=c\)
Differential Equation

87303 The solution of \(\frac{d x}{d y}+\frac{x}{y}=x^{2}\) is:

1 \(\frac{1}{y}=c x-x \log x\)
2 \(\frac{1}{x}=c y-y \log y\)
3 \(\frac{1}{\mathrm{x}}=\mathrm{cx}+\mathrm{x} \log \mathrm{y}\)
4 \(\frac{1}{y}=c x-y \log x\)
Differential Equation

87304 The solution of \(\frac{d y}{d x}+1=e^{x+y}\) is

1 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}+\mathrm{c}=0\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}-\mathrm{x}+\mathrm{c}=0\)
3 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}+\mathrm{c}=0\)
4 \(e^{x+y}-x+c=0\)
Differential Equation

87306 An integrating facto of the equation
\(\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0 \text { is }\)

1 \(e^{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(x\)
Differential Equation

87301 The solution of \(\tan \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\sin (\mathrm{x}+\mathrm{y})+\sin (\mathrm{x}-\mathrm{y})\) is

1 \(\sec y=2 \cos x+c\)
2 \(\sec y=-2 \cos x+c\)
3 \(\tan y=-2 \cos x+c\)
4 \(\sec ^{2} y=-2 \cos x+c\)
Differential Equation

87302 The solution of the differential equation \(\frac{d y}{d x}\) \(\boldsymbol{\operatorname { s i n }}(\mathrm{x}+\mathrm{y}) \boldsymbol{\operatorname { t a n }}(\mathrm{x}+\mathrm{y})-\mathbf{1}\) is

1 \(\operatorname{cosec}(x+y)+\tan (x+y)=x+c\)
2 \(x+\operatorname{cosec}(x+y)=c\)
3 \(x+\tan (x+y)=c\)
4 \(x+\sec (x+y)=c\)
Differential Equation

87303 The solution of \(\frac{d x}{d y}+\frac{x}{y}=x^{2}\) is:

1 \(\frac{1}{y}=c x-x \log x\)
2 \(\frac{1}{x}=c y-y \log y\)
3 \(\frac{1}{\mathrm{x}}=\mathrm{cx}+\mathrm{x} \log \mathrm{y}\)
4 \(\frac{1}{y}=c x-y \log x\)
Differential Equation

87304 The solution of \(\frac{d y}{d x}+1=e^{x+y}\) is

1 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}+\mathrm{c}=0\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}-\mathrm{x}+\mathrm{c}=0\)
3 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}+\mathrm{c}=0\)
4 \(e^{x+y}-x+c=0\)
Differential Equation

87306 An integrating facto of the equation
\(\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0 \text { is }\)

1 \(e^{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(x\)