Integrating Factor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87297 If the solution of \(\frac{d y}{d x}-y \log _{e} 0.5=0, y(0)=1\), and \(y(x) \rightarrow k\), as \(x \rightarrow \infty\) then \(k=\)

1 \(\infty\)
2 -1
3 1
4 0
Differential Equation

87298 The solution of \(x \frac{d y}{d x}=y(\log y-\log x+1)\) is

1 \(y=x e^{c x}\)
2 \(\mathrm{y}^{2}=\mathrm{cx}^{2}\)
3 \(\mathrm{y}^{2}=\mathrm{cx} \log (\mathrm{x})\)
4 \(\log (\mathrm{y})=\mathrm{cx}\)
Differential Equation

87299 The general solution of the differential equation \(\frac{d y}{d x}+y^{\prime}(x)=g(x) g^{\prime}(x)\) is

1 \(g(x)+\log (1+y+g(x)=c\)
2 \(g(x)+\log (1+y-g(x)=c\)
3 \(g(x)-\log (1+y+g(x)=c\)
4 \(\mathrm{g}(\mathrm{x})-\log (1+\mathrm{y}-\mathrm{g}(\mathrm{x})=\mathrm{c}\)
Differential Equation

87300 If \(y=y(x)\) is the solution of the differential equation \(\left(\frac{2+\sin x}{y+1}\right) \frac{d y}{d x}+\cos x=0\) with \(y(0)=1\), then \(y\left(\frac{\pi}{2}\right)\) is equal to

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 1
4 \(\frac{4}{3}\)
Differential Equation

87297 If the solution of \(\frac{d y}{d x}-y \log _{e} 0.5=0, y(0)=1\), and \(y(x) \rightarrow k\), as \(x \rightarrow \infty\) then \(k=\)

1 \(\infty\)
2 -1
3 1
4 0
Differential Equation

87298 The solution of \(x \frac{d y}{d x}=y(\log y-\log x+1)\) is

1 \(y=x e^{c x}\)
2 \(\mathrm{y}^{2}=\mathrm{cx}^{2}\)
3 \(\mathrm{y}^{2}=\mathrm{cx} \log (\mathrm{x})\)
4 \(\log (\mathrm{y})=\mathrm{cx}\)
Differential Equation

87299 The general solution of the differential equation \(\frac{d y}{d x}+y^{\prime}(x)=g(x) g^{\prime}(x)\) is

1 \(g(x)+\log (1+y+g(x)=c\)
2 \(g(x)+\log (1+y-g(x)=c\)
3 \(g(x)-\log (1+y+g(x)=c\)
4 \(\mathrm{g}(\mathrm{x})-\log (1+\mathrm{y}-\mathrm{g}(\mathrm{x})=\mathrm{c}\)
Differential Equation

87300 If \(y=y(x)\) is the solution of the differential equation \(\left(\frac{2+\sin x}{y+1}\right) \frac{d y}{d x}+\cos x=0\) with \(y(0)=1\), then \(y\left(\frac{\pi}{2}\right)\) is equal to

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 1
4 \(\frac{4}{3}\)
Differential Equation

87297 If the solution of \(\frac{d y}{d x}-y \log _{e} 0.5=0, y(0)=1\), and \(y(x) \rightarrow k\), as \(x \rightarrow \infty\) then \(k=\)

1 \(\infty\)
2 -1
3 1
4 0
Differential Equation

87298 The solution of \(x \frac{d y}{d x}=y(\log y-\log x+1)\) is

1 \(y=x e^{c x}\)
2 \(\mathrm{y}^{2}=\mathrm{cx}^{2}\)
3 \(\mathrm{y}^{2}=\mathrm{cx} \log (\mathrm{x})\)
4 \(\log (\mathrm{y})=\mathrm{cx}\)
Differential Equation

87299 The general solution of the differential equation \(\frac{d y}{d x}+y^{\prime}(x)=g(x) g^{\prime}(x)\) is

1 \(g(x)+\log (1+y+g(x)=c\)
2 \(g(x)+\log (1+y-g(x)=c\)
3 \(g(x)-\log (1+y+g(x)=c\)
4 \(\mathrm{g}(\mathrm{x})-\log (1+\mathrm{y}-\mathrm{g}(\mathrm{x})=\mathrm{c}\)
Differential Equation

87300 If \(y=y(x)\) is the solution of the differential equation \(\left(\frac{2+\sin x}{y+1}\right) \frac{d y}{d x}+\cos x=0\) with \(y(0)=1\), then \(y\left(\frac{\pi}{2}\right)\) is equal to

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 1
4 \(\frac{4}{3}\)
Differential Equation

87297 If the solution of \(\frac{d y}{d x}-y \log _{e} 0.5=0, y(0)=1\), and \(y(x) \rightarrow k\), as \(x \rightarrow \infty\) then \(k=\)

1 \(\infty\)
2 -1
3 1
4 0
Differential Equation

87298 The solution of \(x \frac{d y}{d x}=y(\log y-\log x+1)\) is

1 \(y=x e^{c x}\)
2 \(\mathrm{y}^{2}=\mathrm{cx}^{2}\)
3 \(\mathrm{y}^{2}=\mathrm{cx} \log (\mathrm{x})\)
4 \(\log (\mathrm{y})=\mathrm{cx}\)
Differential Equation

87299 The general solution of the differential equation \(\frac{d y}{d x}+y^{\prime}(x)=g(x) g^{\prime}(x)\) is

1 \(g(x)+\log (1+y+g(x)=c\)
2 \(g(x)+\log (1+y-g(x)=c\)
3 \(g(x)-\log (1+y+g(x)=c\)
4 \(\mathrm{g}(\mathrm{x})-\log (1+\mathrm{y}-\mathrm{g}(\mathrm{x})=\mathrm{c}\)
Differential Equation

87300 If \(y=y(x)\) is the solution of the differential equation \(\left(\frac{2+\sin x}{y+1}\right) \frac{d y}{d x}+\cos x=0\) with \(y(0)=1\), then \(y\left(\frac{\pi}{2}\right)\) is equal to

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 1
4 \(\frac{4}{3}\)