Area Bounded by Miscellaneous Curves and Shapes
Application of the Integrals

87050 The area (in sq. units) of the region \(A=\{x, y)\) : \((x-1)[x] \leq y \leq 2 \sqrt{x}, \quad 0 \leq x \leq 2\}\), where \([t]\) denotes the greatest integer function, is

1 \(\frac{8}{3} \sqrt{2}-\frac{1}{2}\)
2 \(\frac{4}{3} \sqrt{2}+1\)
3 \(\frac{8}{3} \sqrt{2}-1\)
4 \(\frac{4}{3} \sqrt{2}-\frac{1}{2}\)
Application of the Integrals

87051 Consider region \(R=\left\{(x, y) \in R^{2} ; x^{2} \leq y \leq 2 x\right\}\) if a line \(y=\alpha\) divides the area of region \(R\) into two equal parts, then which of the following is true?

1 \(\alpha^{3}-6 \alpha^{2}+16=0\)
2 \(3 \alpha^{2}-8 \alpha^{3 / 2}+8=0\)
3 \(3 \alpha^{2}-8 \alpha+8=0\)
4 \(\alpha^{3}-6 \alpha^{3 / 2}-16=0\)
Application of the Integrals

87052 The area (in sq. units) of the region \(\{(x, y): 0 \leq\) \(\left.y \leq x+1,0 \leq y \leq x+1 \frac{1}{2} \leq x \leq 2\right\}\) is

1 \(\frac{23}{16}\)
2 \(\frac{79}{24}\)
3 \(\frac{79}{16}\)
4 \(\frac{23}{6}\)
Application of the Integrals

87053 The area (in sq. units) of the part of the region \(A=\left\{(x, y):|x|+|y| \leq 1,2 \mathbf{y}^{2} \geq|\mathbf{x}|\right\}\) is

1 \(\frac{1}{3}\)
2 \(\frac{7}{6}\)
3 \(\frac{1}{6}\)
4 \(\frac{5}{6}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of the Integrals

87050 The area (in sq. units) of the region \(A=\{x, y)\) : \((x-1)[x] \leq y \leq 2 \sqrt{x}, \quad 0 \leq x \leq 2\}\), where \([t]\) denotes the greatest integer function, is

1 \(\frac{8}{3} \sqrt{2}-\frac{1}{2}\)
2 \(\frac{4}{3} \sqrt{2}+1\)
3 \(\frac{8}{3} \sqrt{2}-1\)
4 \(\frac{4}{3} \sqrt{2}-\frac{1}{2}\)
Application of the Integrals

87051 Consider region \(R=\left\{(x, y) \in R^{2} ; x^{2} \leq y \leq 2 x\right\}\) if a line \(y=\alpha\) divides the area of region \(R\) into two equal parts, then which of the following is true?

1 \(\alpha^{3}-6 \alpha^{2}+16=0\)
2 \(3 \alpha^{2}-8 \alpha^{3 / 2}+8=0\)
3 \(3 \alpha^{2}-8 \alpha+8=0\)
4 \(\alpha^{3}-6 \alpha^{3 / 2}-16=0\)
Application of the Integrals

87052 The area (in sq. units) of the region \(\{(x, y): 0 \leq\) \(\left.y \leq x+1,0 \leq y \leq x+1 \frac{1}{2} \leq x \leq 2\right\}\) is

1 \(\frac{23}{16}\)
2 \(\frac{79}{24}\)
3 \(\frac{79}{16}\)
4 \(\frac{23}{6}\)
Application of the Integrals

87053 The area (in sq. units) of the part of the region \(A=\left\{(x, y):|x|+|y| \leq 1,2 \mathbf{y}^{2} \geq|\mathbf{x}|\right\}\) is

1 \(\frac{1}{3}\)
2 \(\frac{7}{6}\)
3 \(\frac{1}{6}\)
4 \(\frac{5}{6}\)
Application of the Integrals

87050 The area (in sq. units) of the region \(A=\{x, y)\) : \((x-1)[x] \leq y \leq 2 \sqrt{x}, \quad 0 \leq x \leq 2\}\), where \([t]\) denotes the greatest integer function, is

1 \(\frac{8}{3} \sqrt{2}-\frac{1}{2}\)
2 \(\frac{4}{3} \sqrt{2}+1\)
3 \(\frac{8}{3} \sqrt{2}-1\)
4 \(\frac{4}{3} \sqrt{2}-\frac{1}{2}\)
Application of the Integrals

87051 Consider region \(R=\left\{(x, y) \in R^{2} ; x^{2} \leq y \leq 2 x\right\}\) if a line \(y=\alpha\) divides the area of region \(R\) into two equal parts, then which of the following is true?

1 \(\alpha^{3}-6 \alpha^{2}+16=0\)
2 \(3 \alpha^{2}-8 \alpha^{3 / 2}+8=0\)
3 \(3 \alpha^{2}-8 \alpha+8=0\)
4 \(\alpha^{3}-6 \alpha^{3 / 2}-16=0\)
Application of the Integrals

87052 The area (in sq. units) of the region \(\{(x, y): 0 \leq\) \(\left.y \leq x+1,0 \leq y \leq x+1 \frac{1}{2} \leq x \leq 2\right\}\) is

1 \(\frac{23}{16}\)
2 \(\frac{79}{24}\)
3 \(\frac{79}{16}\)
4 \(\frac{23}{6}\)
Application of the Integrals

87053 The area (in sq. units) of the part of the region \(A=\left\{(x, y):|x|+|y| \leq 1,2 \mathbf{y}^{2} \geq|\mathbf{x}|\right\}\) is

1 \(\frac{1}{3}\)
2 \(\frac{7}{6}\)
3 \(\frac{1}{6}\)
4 \(\frac{5}{6}\)
Application of the Integrals

87050 The area (in sq. units) of the region \(A=\{x, y)\) : \((x-1)[x] \leq y \leq 2 \sqrt{x}, \quad 0 \leq x \leq 2\}\), where \([t]\) denotes the greatest integer function, is

1 \(\frac{8}{3} \sqrt{2}-\frac{1}{2}\)
2 \(\frac{4}{3} \sqrt{2}+1\)
3 \(\frac{8}{3} \sqrt{2}-1\)
4 \(\frac{4}{3} \sqrt{2}-\frac{1}{2}\)
Application of the Integrals

87051 Consider region \(R=\left\{(x, y) \in R^{2} ; x^{2} \leq y \leq 2 x\right\}\) if a line \(y=\alpha\) divides the area of region \(R\) into two equal parts, then which of the following is true?

1 \(\alpha^{3}-6 \alpha^{2}+16=0\)
2 \(3 \alpha^{2}-8 \alpha^{3 / 2}+8=0\)
3 \(3 \alpha^{2}-8 \alpha+8=0\)
4 \(\alpha^{3}-6 \alpha^{3 / 2}-16=0\)
Application of the Integrals

87052 The area (in sq. units) of the region \(\{(x, y): 0 \leq\) \(\left.y \leq x+1,0 \leq y \leq x+1 \frac{1}{2} \leq x \leq 2\right\}\) is

1 \(\frac{23}{16}\)
2 \(\frac{79}{24}\)
3 \(\frac{79}{16}\)
4 \(\frac{23}{6}\)
Application of the Integrals

87053 The area (in sq. units) of the part of the region \(A=\left\{(x, y):|x|+|y| \leq 1,2 \mathbf{y}^{2} \geq|\mathbf{x}|\right\}\) is

1 \(\frac{1}{3}\)
2 \(\frac{7}{6}\)
3 \(\frac{1}{6}\)
4 \(\frac{5}{6}\)