Area Bounded by Miscellaneous Curves and Shapes
Application of the Integrals

87042 You are given a curve, \(y=\ln (x+e)\). What will be the area enclosed between this curve and the coordinate axes?

1 1
2 0
3 \(2 \mathrm{e}\)
4 e-1
Application of the Integrals

87043 The area of the region \(A=\{(x, y): 0 \leq y \leq x|x|+1\) and \(-1 \leq \mathrm{x} \leq 1)\}\) in sq. units , is

1 2
2 \(\frac{4}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{2}{3}\)
Application of the Integrals

87047 The area (in sq. units) of the region \(\left[(x, y) \in R^{2}\right.\) : \(\left.\mathrm{x}^{2} \leq \mathrm{y} \leq \mathbf{3}-\mathbf{2 x}\right\}\) is

1 \(\frac{31}{3}\)
2 \(\frac{32}{3}\)
3 \(\frac{29}{3}\)
4 \(\frac{34}{3}\)
Application of the Integrals

87048 Given, \(f(x)=\left\{\begin{array}{l}x, &0 \leq x\lt \frac{1}{2} \\ \frac{1}{2},& x=\frac{1}{2} \\ 1-x,& \frac{1}{2}\lt x \leq 1\end{array}\right.\) and \(g(x)=\)
\(\left(x-\frac{1}{2}\right)^{2}, x \in R\). Then the area (in sq. units) of the region bounded by the curves \(y=f(x)\) and \(y=g(x)\) between eh lines, \(2 x=1\) and \(2 x=\sqrt{3}\), is

1 \(\frac{1}{2}+\frac{\sqrt{3}}{4}\)
2 \(\frac{1}{3}+\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{2}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\sqrt{3}}{4}-\frac{1}{3}\)
Application of the Integrals

87049 The area (in sq. units) of the region \(\left\{(x, y) \in R^{2}\right.\) \(\left.\mid 4 x^{2} \leq y \leq 8 x+12\right)\) is

1 \(\frac{124}{3}\)
2 \(\frac{125}{3}\)
3 \(\frac{127}{3}\)
4 \(\frac{128}{3}\)
Application of the Integrals

87042 You are given a curve, \(y=\ln (x+e)\). What will be the area enclosed between this curve and the coordinate axes?

1 1
2 0
3 \(2 \mathrm{e}\)
4 e-1
Application of the Integrals

87043 The area of the region \(A=\{(x, y): 0 \leq y \leq x|x|+1\) and \(-1 \leq \mathrm{x} \leq 1)\}\) in sq. units , is

1 2
2 \(\frac{4}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{2}{3}\)
Application of the Integrals

87047 The area (in sq. units) of the region \(\left[(x, y) \in R^{2}\right.\) : \(\left.\mathrm{x}^{2} \leq \mathrm{y} \leq \mathbf{3}-\mathbf{2 x}\right\}\) is

1 \(\frac{31}{3}\)
2 \(\frac{32}{3}\)
3 \(\frac{29}{3}\)
4 \(\frac{34}{3}\)
Application of the Integrals

87048 Given, \(f(x)=\left\{\begin{array}{l}x, &0 \leq x\lt \frac{1}{2} \\ \frac{1}{2},& x=\frac{1}{2} \\ 1-x,& \frac{1}{2}\lt x \leq 1\end{array}\right.\) and \(g(x)=\)
\(\left(x-\frac{1}{2}\right)^{2}, x \in R\). Then the area (in sq. units) of the region bounded by the curves \(y=f(x)\) and \(y=g(x)\) between eh lines, \(2 x=1\) and \(2 x=\sqrt{3}\), is

1 \(\frac{1}{2}+\frac{\sqrt{3}}{4}\)
2 \(\frac{1}{3}+\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{2}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\sqrt{3}}{4}-\frac{1}{3}\)
Application of the Integrals

87049 The area (in sq. units) of the region \(\left\{(x, y) \in R^{2}\right.\) \(\left.\mid 4 x^{2} \leq y \leq 8 x+12\right)\) is

1 \(\frac{124}{3}\)
2 \(\frac{125}{3}\)
3 \(\frac{127}{3}\)
4 \(\frac{128}{3}\)
Application of the Integrals

87042 You are given a curve, \(y=\ln (x+e)\). What will be the area enclosed between this curve and the coordinate axes?

1 1
2 0
3 \(2 \mathrm{e}\)
4 e-1
Application of the Integrals

87043 The area of the region \(A=\{(x, y): 0 \leq y \leq x|x|+1\) and \(-1 \leq \mathrm{x} \leq 1)\}\) in sq. units , is

1 2
2 \(\frac{4}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{2}{3}\)
Application of the Integrals

87047 The area (in sq. units) of the region \(\left[(x, y) \in R^{2}\right.\) : \(\left.\mathrm{x}^{2} \leq \mathrm{y} \leq \mathbf{3}-\mathbf{2 x}\right\}\) is

1 \(\frac{31}{3}\)
2 \(\frac{32}{3}\)
3 \(\frac{29}{3}\)
4 \(\frac{34}{3}\)
Application of the Integrals

87048 Given, \(f(x)=\left\{\begin{array}{l}x, &0 \leq x\lt \frac{1}{2} \\ \frac{1}{2},& x=\frac{1}{2} \\ 1-x,& \frac{1}{2}\lt x \leq 1\end{array}\right.\) and \(g(x)=\)
\(\left(x-\frac{1}{2}\right)^{2}, x \in R\). Then the area (in sq. units) of the region bounded by the curves \(y=f(x)\) and \(y=g(x)\) between eh lines, \(2 x=1\) and \(2 x=\sqrt{3}\), is

1 \(\frac{1}{2}+\frac{\sqrt{3}}{4}\)
2 \(\frac{1}{3}+\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{2}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\sqrt{3}}{4}-\frac{1}{3}\)
Application of the Integrals

87049 The area (in sq. units) of the region \(\left\{(x, y) \in R^{2}\right.\) \(\left.\mid 4 x^{2} \leq y \leq 8 x+12\right)\) is

1 \(\frac{124}{3}\)
2 \(\frac{125}{3}\)
3 \(\frac{127}{3}\)
4 \(\frac{128}{3}\)
Application of the Integrals

87042 You are given a curve, \(y=\ln (x+e)\). What will be the area enclosed between this curve and the coordinate axes?

1 1
2 0
3 \(2 \mathrm{e}\)
4 e-1
Application of the Integrals

87043 The area of the region \(A=\{(x, y): 0 \leq y \leq x|x|+1\) and \(-1 \leq \mathrm{x} \leq 1)\}\) in sq. units , is

1 2
2 \(\frac{4}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{2}{3}\)
Application of the Integrals

87047 The area (in sq. units) of the region \(\left[(x, y) \in R^{2}\right.\) : \(\left.\mathrm{x}^{2} \leq \mathrm{y} \leq \mathbf{3}-\mathbf{2 x}\right\}\) is

1 \(\frac{31}{3}\)
2 \(\frac{32}{3}\)
3 \(\frac{29}{3}\)
4 \(\frac{34}{3}\)
Application of the Integrals

87048 Given, \(f(x)=\left\{\begin{array}{l}x, &0 \leq x\lt \frac{1}{2} \\ \frac{1}{2},& x=\frac{1}{2} \\ 1-x,& \frac{1}{2}\lt x \leq 1\end{array}\right.\) and \(g(x)=\)
\(\left(x-\frac{1}{2}\right)^{2}, x \in R\). Then the area (in sq. units) of the region bounded by the curves \(y=f(x)\) and \(y=g(x)\) between eh lines, \(2 x=1\) and \(2 x=\sqrt{3}\), is

1 \(\frac{1}{2}+\frac{\sqrt{3}}{4}\)
2 \(\frac{1}{3}+\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{2}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\sqrt{3}}{4}-\frac{1}{3}\)
Application of the Integrals

87049 The area (in sq. units) of the region \(\left\{(x, y) \in R^{2}\right.\) \(\left.\mid 4 x^{2} \leq y \leq 8 x+12\right)\) is

1 \(\frac{124}{3}\)
2 \(\frac{125}{3}\)
3 \(\frac{127}{3}\)
4 \(\frac{128}{3}\)
Application of the Integrals

87042 You are given a curve, \(y=\ln (x+e)\). What will be the area enclosed between this curve and the coordinate axes?

1 1
2 0
3 \(2 \mathrm{e}\)
4 e-1
Application of the Integrals

87043 The area of the region \(A=\{(x, y): 0 \leq y \leq x|x|+1\) and \(-1 \leq \mathrm{x} \leq 1)\}\) in sq. units , is

1 2
2 \(\frac{4}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{2}{3}\)
Application of the Integrals

87047 The area (in sq. units) of the region \(\left[(x, y) \in R^{2}\right.\) : \(\left.\mathrm{x}^{2} \leq \mathrm{y} \leq \mathbf{3}-\mathbf{2 x}\right\}\) is

1 \(\frac{31}{3}\)
2 \(\frac{32}{3}\)
3 \(\frac{29}{3}\)
4 \(\frac{34}{3}\)
Application of the Integrals

87048 Given, \(f(x)=\left\{\begin{array}{l}x, &0 \leq x\lt \frac{1}{2} \\ \frac{1}{2},& x=\frac{1}{2} \\ 1-x,& \frac{1}{2}\lt x \leq 1\end{array}\right.\) and \(g(x)=\)
\(\left(x-\frac{1}{2}\right)^{2}, x \in R\). Then the area (in sq. units) of the region bounded by the curves \(y=f(x)\) and \(y=g(x)\) between eh lines, \(2 x=1\) and \(2 x=\sqrt{3}\), is

1 \(\frac{1}{2}+\frac{\sqrt{3}}{4}\)
2 \(\frac{1}{3}+\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{2}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\sqrt{3}}{4}-\frac{1}{3}\)
Application of the Integrals

87049 The area (in sq. units) of the region \(\left\{(x, y) \in R^{2}\right.\) \(\left.\mid 4 x^{2} \leq y \leq 8 x+12\right)\) is

1 \(\frac{124}{3}\)
2 \(\frac{125}{3}\)
3 \(\frac{127}{3}\)
4 \(\frac{128}{3}\)