Area Bounded by Miscellaneous Curves and Shapes
Application of the Integrals

87030 The area of the region
\(A\left\{(x, y):|\cos x-\sin x| \leq y \leq \sin x, 0 \leq x \leq \frac{\pi}{2}\right\}\) is

1 \(\sqrt{5}-2 \sqrt{2}+1\)
2 \(1-\frac{3}{\sqrt{2}}+\frac{4}{\sqrt{5}}\)
3 \(\frac{3}{\sqrt{5}}-\frac{3}{\sqrt{2}}+1\)
4 \(\sqrt{5}+2 \sqrt{2}-4.5\)
Application of the Integrals

87031 The lengths of the sides of a triangle are \(10+\) \(x^{2}, 10+x^{2}\) and \(20-2 x^{2}\). If for \(x=k\), the area of the triangle is maximum, then \(3 \mathrm{k}^{2}\) is equal to :

1 5
2 8
3 10
4 12
Application of the Integrals

87032 Let \(\mathbf{R}\) be the point \((3,7)\) and let \(P\) and \(Q\) be two points on the line \(x+y=5\) such that \(P Q R\) is an equilateral triangle. Then the area of \(\triangle \mathrm{PQR}\) is:

1 \(\frac{25}{4 \sqrt{3}}\)
2 \(\frac{25 \sqrt{3}}{2}\)
3 \(\frac{25}{\sqrt{3}}\)
4 \(\frac{25}{2 \sqrt{3}}\)
Application of the Integrals

87035 The curve \(y=a x^{2}+b x\) passes through the point \((1,2)\) and lies above the \(\mathrm{X}\)-axis for \(0 \leq \mathrm{x} \leq 8\). If the area enclosed by this curve, the \(\mathrm{X}\)-axis the line \(x=6\) is 108 square units, then \(2 b-a=\)

1 2
2 0
3 1
4 -1
Application of the Integrals

87030 The area of the region
\(A\left\{(x, y):|\cos x-\sin x| \leq y \leq \sin x, 0 \leq x \leq \frac{\pi}{2}\right\}\) is

1 \(\sqrt{5}-2 \sqrt{2}+1\)
2 \(1-\frac{3}{\sqrt{2}}+\frac{4}{\sqrt{5}}\)
3 \(\frac{3}{\sqrt{5}}-\frac{3}{\sqrt{2}}+1\)
4 \(\sqrt{5}+2 \sqrt{2}-4.5\)
Application of the Integrals

87031 The lengths of the sides of a triangle are \(10+\) \(x^{2}, 10+x^{2}\) and \(20-2 x^{2}\). If for \(x=k\), the area of the triangle is maximum, then \(3 \mathrm{k}^{2}\) is equal to :

1 5
2 8
3 10
4 12
Application of the Integrals

87032 Let \(\mathbf{R}\) be the point \((3,7)\) and let \(P\) and \(Q\) be two points on the line \(x+y=5\) such that \(P Q R\) is an equilateral triangle. Then the area of \(\triangle \mathrm{PQR}\) is:

1 \(\frac{25}{4 \sqrt{3}}\)
2 \(\frac{25 \sqrt{3}}{2}\)
3 \(\frac{25}{\sqrt{3}}\)
4 \(\frac{25}{2 \sqrt{3}}\)
Application of the Integrals

87035 The curve \(y=a x^{2}+b x\) passes through the point \((1,2)\) and lies above the \(\mathrm{X}\)-axis for \(0 \leq \mathrm{x} \leq 8\). If the area enclosed by this curve, the \(\mathrm{X}\)-axis the line \(x=6\) is 108 square units, then \(2 b-a=\)

1 2
2 0
3 1
4 -1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of the Integrals

87030 The area of the region
\(A\left\{(x, y):|\cos x-\sin x| \leq y \leq \sin x, 0 \leq x \leq \frac{\pi}{2}\right\}\) is

1 \(\sqrt{5}-2 \sqrt{2}+1\)
2 \(1-\frac{3}{\sqrt{2}}+\frac{4}{\sqrt{5}}\)
3 \(\frac{3}{\sqrt{5}}-\frac{3}{\sqrt{2}}+1\)
4 \(\sqrt{5}+2 \sqrt{2}-4.5\)
Application of the Integrals

87031 The lengths of the sides of a triangle are \(10+\) \(x^{2}, 10+x^{2}\) and \(20-2 x^{2}\). If for \(x=k\), the area of the triangle is maximum, then \(3 \mathrm{k}^{2}\) is equal to :

1 5
2 8
3 10
4 12
Application of the Integrals

87032 Let \(\mathbf{R}\) be the point \((3,7)\) and let \(P\) and \(Q\) be two points on the line \(x+y=5\) such that \(P Q R\) is an equilateral triangle. Then the area of \(\triangle \mathrm{PQR}\) is:

1 \(\frac{25}{4 \sqrt{3}}\)
2 \(\frac{25 \sqrt{3}}{2}\)
3 \(\frac{25}{\sqrt{3}}\)
4 \(\frac{25}{2 \sqrt{3}}\)
Application of the Integrals

87035 The curve \(y=a x^{2}+b x\) passes through the point \((1,2)\) and lies above the \(\mathrm{X}\)-axis for \(0 \leq \mathrm{x} \leq 8\). If the area enclosed by this curve, the \(\mathrm{X}\)-axis the line \(x=6\) is 108 square units, then \(2 b-a=\)

1 2
2 0
3 1
4 -1
Application of the Integrals

87030 The area of the region
\(A\left\{(x, y):|\cos x-\sin x| \leq y \leq \sin x, 0 \leq x \leq \frac{\pi}{2}\right\}\) is

1 \(\sqrt{5}-2 \sqrt{2}+1\)
2 \(1-\frac{3}{\sqrt{2}}+\frac{4}{\sqrt{5}}\)
3 \(\frac{3}{\sqrt{5}}-\frac{3}{\sqrt{2}}+1\)
4 \(\sqrt{5}+2 \sqrt{2}-4.5\)
Application of the Integrals

87031 The lengths of the sides of a triangle are \(10+\) \(x^{2}, 10+x^{2}\) and \(20-2 x^{2}\). If for \(x=k\), the area of the triangle is maximum, then \(3 \mathrm{k}^{2}\) is equal to :

1 5
2 8
3 10
4 12
Application of the Integrals

87032 Let \(\mathbf{R}\) be the point \((3,7)\) and let \(P\) and \(Q\) be two points on the line \(x+y=5\) such that \(P Q R\) is an equilateral triangle. Then the area of \(\triangle \mathrm{PQR}\) is:

1 \(\frac{25}{4 \sqrt{3}}\)
2 \(\frac{25 \sqrt{3}}{2}\)
3 \(\frac{25}{\sqrt{3}}\)
4 \(\frac{25}{2 \sqrt{3}}\)
Application of the Integrals

87035 The curve \(y=a x^{2}+b x\) passes through the point \((1,2)\) and lies above the \(\mathrm{X}\)-axis for \(0 \leq \mathrm{x} \leq 8\). If the area enclosed by this curve, the \(\mathrm{X}\)-axis the line \(x=6\) is 108 square units, then \(2 b-a=\)

1 2
2 0
3 1
4 -1