Area Bounded by Miscellaneous Curves and Shapes
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of the Integrals

87025 The three lies of a triangle are give by \(\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0\). If the point \((-2, \lambda)\)
lies inside and \((\mu, 1)\) lies outside the triangle, then

1 \(\lambda \in\left(1, \frac{10}{3}\right) ; \mu \in(-3,5)\)
2 \(\lambda \in\left(2, \frac{10}{3}\right) ; \mu \in(-1,1)\)
3 \(\lambda \in\left(-1, \frac{9}{2}\right) ; \mu \in\left(-2, \frac{10}{3}\right)\)
4 None of the above
Application of the Integrals

87027 Let \(q\) be the maximum integral value of \(p\) in \([0\), 10] for which the roots of the equation \(x^{2}-p x+\frac{5}{4} p=0\) are rational. Then the area of the region \(\left\{(x, y): 0 \leq y \leq(x-q)^{2}, 0 \leq x \leq q\right)\) is

1 164
2 243
3 \(\frac{125}{3}\)
4 25
Application of the Integrals

87028 The area of the region given by \(\{(x, y): x y \leq 8\), \(\left.1 \leq \mathrm{y} \leq \mathrm{x}^{2}\right\}\) is

1 \(16 \log _{\mathrm{e}} 2-\frac{14}{3}\)
2 \(8 \log _{\mathrm{e}} 2-\frac{13}{3}\)
3 \(8 \log _{\mathrm{e}} 2+\frac{7}{6}\)
4 \(16 \log _{\mathrm{e}} 2+\frac{7}{3}\)
Application of the Integrals

87029 If an equilateral triangle is inscribed in the circle \(x^{2}+y^{2}=a^{2}\), the length of its each side is

1 \(\sqrt{2} \mathrm{a}\)
2 \(\sqrt{3} \mathrm{a}\)
3 \(\frac{\sqrt{3}}{2} \mathrm{a}\)
4 \(\frac{1}{\sqrt{3}} \mathrm{a}\)
Application of the Integrals

87025 The three lies of a triangle are give by \(\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0\). If the point \((-2, \lambda)\)
lies inside and \((\mu, 1)\) lies outside the triangle, then

1 \(\lambda \in\left(1, \frac{10}{3}\right) ; \mu \in(-3,5)\)
2 \(\lambda \in\left(2, \frac{10}{3}\right) ; \mu \in(-1,1)\)
3 \(\lambda \in\left(-1, \frac{9}{2}\right) ; \mu \in\left(-2, \frac{10}{3}\right)\)
4 None of the above
Application of the Integrals

87027 Let \(q\) be the maximum integral value of \(p\) in \([0\), 10] for which the roots of the equation \(x^{2}-p x+\frac{5}{4} p=0\) are rational. Then the area of the region \(\left\{(x, y): 0 \leq y \leq(x-q)^{2}, 0 \leq x \leq q\right)\) is

1 164
2 243
3 \(\frac{125}{3}\)
4 25
Application of the Integrals

87028 The area of the region given by \(\{(x, y): x y \leq 8\), \(\left.1 \leq \mathrm{y} \leq \mathrm{x}^{2}\right\}\) is

1 \(16 \log _{\mathrm{e}} 2-\frac{14}{3}\)
2 \(8 \log _{\mathrm{e}} 2-\frac{13}{3}\)
3 \(8 \log _{\mathrm{e}} 2+\frac{7}{6}\)
4 \(16 \log _{\mathrm{e}} 2+\frac{7}{3}\)
Application of the Integrals

87029 If an equilateral triangle is inscribed in the circle \(x^{2}+y^{2}=a^{2}\), the length of its each side is

1 \(\sqrt{2} \mathrm{a}\)
2 \(\sqrt{3} \mathrm{a}\)
3 \(\frac{\sqrt{3}}{2} \mathrm{a}\)
4 \(\frac{1}{\sqrt{3}} \mathrm{a}\)
Application of the Integrals

87025 The three lies of a triangle are give by \(\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0\). If the point \((-2, \lambda)\)
lies inside and \((\mu, 1)\) lies outside the triangle, then

1 \(\lambda \in\left(1, \frac{10}{3}\right) ; \mu \in(-3,5)\)
2 \(\lambda \in\left(2, \frac{10}{3}\right) ; \mu \in(-1,1)\)
3 \(\lambda \in\left(-1, \frac{9}{2}\right) ; \mu \in\left(-2, \frac{10}{3}\right)\)
4 None of the above
Application of the Integrals

87027 Let \(q\) be the maximum integral value of \(p\) in \([0\), 10] for which the roots of the equation \(x^{2}-p x+\frac{5}{4} p=0\) are rational. Then the area of the region \(\left\{(x, y): 0 \leq y \leq(x-q)^{2}, 0 \leq x \leq q\right)\) is

1 164
2 243
3 \(\frac{125}{3}\)
4 25
Application of the Integrals

87028 The area of the region given by \(\{(x, y): x y \leq 8\), \(\left.1 \leq \mathrm{y} \leq \mathrm{x}^{2}\right\}\) is

1 \(16 \log _{\mathrm{e}} 2-\frac{14}{3}\)
2 \(8 \log _{\mathrm{e}} 2-\frac{13}{3}\)
3 \(8 \log _{\mathrm{e}} 2+\frac{7}{6}\)
4 \(16 \log _{\mathrm{e}} 2+\frac{7}{3}\)
Application of the Integrals

87029 If an equilateral triangle is inscribed in the circle \(x^{2}+y^{2}=a^{2}\), the length of its each side is

1 \(\sqrt{2} \mathrm{a}\)
2 \(\sqrt{3} \mathrm{a}\)
3 \(\frac{\sqrt{3}}{2} \mathrm{a}\)
4 \(\frac{1}{\sqrt{3}} \mathrm{a}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of the Integrals

87025 The three lies of a triangle are give by \(\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0\). If the point \((-2, \lambda)\)
lies inside and \((\mu, 1)\) lies outside the triangle, then

1 \(\lambda \in\left(1, \frac{10}{3}\right) ; \mu \in(-3,5)\)
2 \(\lambda \in\left(2, \frac{10}{3}\right) ; \mu \in(-1,1)\)
3 \(\lambda \in\left(-1, \frac{9}{2}\right) ; \mu \in\left(-2, \frac{10}{3}\right)\)
4 None of the above
Application of the Integrals

87027 Let \(q\) be the maximum integral value of \(p\) in \([0\), 10] for which the roots of the equation \(x^{2}-p x+\frac{5}{4} p=0\) are rational. Then the area of the region \(\left\{(x, y): 0 \leq y \leq(x-q)^{2}, 0 \leq x \leq q\right)\) is

1 164
2 243
3 \(\frac{125}{3}\)
4 25
Application of the Integrals

87028 The area of the region given by \(\{(x, y): x y \leq 8\), \(\left.1 \leq \mathrm{y} \leq \mathrm{x}^{2}\right\}\) is

1 \(16 \log _{\mathrm{e}} 2-\frac{14}{3}\)
2 \(8 \log _{\mathrm{e}} 2-\frac{13}{3}\)
3 \(8 \log _{\mathrm{e}} 2+\frac{7}{6}\)
4 \(16 \log _{\mathrm{e}} 2+\frac{7}{3}\)
Application of the Integrals

87029 If an equilateral triangle is inscribed in the circle \(x^{2}+y^{2}=a^{2}\), the length of its each side is

1 \(\sqrt{2} \mathrm{a}\)
2 \(\sqrt{3} \mathrm{a}\)
3 \(\frac{\sqrt{3}}{2} \mathrm{a}\)
4 \(\frac{1}{\sqrt{3}} \mathrm{a}\)