86774 The value of integral ∫0π/2ϕ(x)ϕ(x)+ϕ(π/2−x)dx is
(A) : Let,I=∫0π/2ϕ(x)ϕ(x)+ϕ(π2−x)dx∫0af(x)dx=∫0af(a−x)dxI=∫0π/2ϕ(π2−x)ϕ(π2−x)+ϕ(x)dxOn adding equation (i) and (ii), we get -2I=∫0π/21.dx=[x]0π/2=π/2I=π/4
86775 Evaluate : ∫01dx2−x2.
(A) : Let,I=∫01dx2−x2⇒I=∫01dx(2)2−x2We know that,[∵∫1a2−x2dx=sin−1(xa)+C]=[sin−1x2]01=sin−1(12)=sin−1(sinπ4)=π4
86776 Evaluate ∫0π/2sinx1+cos2xdx
(B) : Let,I=∫0π/2sinx1+cos2xdxPut, cosx=t−sinxdx=dtNow, x=0,t=cos0=1∖And,x=π2,t=cosπ2=0I=−∫10dt1+t2=−[tan−1t]10−[tan−10−tan−11]=−[0−π4]=π4
86777 ∫0π[cotx]dx,[.]. denotes the greatest integer function, is equal to
(D):Let, I=∫0π[cotx]dxUsing ∫0af(x)dx=∫0af(a−x)dxI=∫0π[cot(π−x)]dxI=∫0π−cotxdx On adding equation (i) and (ii), we get - 2I=∫0π[cotx]dx+∫0π[−cotx]dx2I=∫0π(−1)dx2I=[−x]0π2I=−πI=−π2