Leibnitz's Rules
Integral Calculus

86778 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-

1 \(\left(3, \frac{27}{4}\right)\)
2 \(\left(3, \frac{23}{4}\right)\)
3 \(\left(4, \frac{27}{4}\right)\)
4 \(\left(4, \frac{23}{4}\right)\)
Integral Calculus

86779 For any integer \(n\), the integral
\(\int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x\) has the value

1 1
2 \(\pi\)
3 \(2 \pi\)
4 None of these
Integral Calculus

86782 \(\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x=f(x) e^{x}+C\), Where \(C\) is a constant, then \(\frac{d^{3} f}{d x^{3}}\) at \(x=1\) is equal to :

1 \(-\frac{3}{4}\)
2 \(\frac{3}{4}\)
3 \(-\frac{3}{2}\)
4 \(\frac{3}{2}\)
Integral Calculus

86783 Let \(\alpha \in(0,1)\) and \(\beta=\log _{e}(1-\alpha)\). Let \(P_{n}(x)=x\) \(+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots . .+\frac{x^{n}}{n}, x \in(0,1) . \quad\) Then the integral \(\int_{0}^{a} \frac{\mathbf{t}^{50}}{1-\mathbf{t}} \mathbf{d t}\) is equal to

1 \(\mathrm{P}_{50}(\alpha)-\beta\)
2 \(-\left(\beta+P_{50}(\alpha)\right)\)
3 \(\beta+P_{50}(\alpha)\)
4 \(\beta-P_{50}(\alpha)\)
Integral Calculus

86784 Let \(I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3 \ldots\) Then

1 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
2 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
3 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
4 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
Integral Calculus

86778 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-

1 \(\left(3, \frac{27}{4}\right)\)
2 \(\left(3, \frac{23}{4}\right)\)
3 \(\left(4, \frac{27}{4}\right)\)
4 \(\left(4, \frac{23}{4}\right)\)
Integral Calculus

86779 For any integer \(n\), the integral
\(\int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x\) has the value

1 1
2 \(\pi\)
3 \(2 \pi\)
4 None of these
Integral Calculus

86782 \(\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x=f(x) e^{x}+C\), Where \(C\) is a constant, then \(\frac{d^{3} f}{d x^{3}}\) at \(x=1\) is equal to :

1 \(-\frac{3}{4}\)
2 \(\frac{3}{4}\)
3 \(-\frac{3}{2}\)
4 \(\frac{3}{2}\)
Integral Calculus

86783 Let \(\alpha \in(0,1)\) and \(\beta=\log _{e}(1-\alpha)\). Let \(P_{n}(x)=x\) \(+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots . .+\frac{x^{n}}{n}, x \in(0,1) . \quad\) Then the integral \(\int_{0}^{a} \frac{\mathbf{t}^{50}}{1-\mathbf{t}} \mathbf{d t}\) is equal to

1 \(\mathrm{P}_{50}(\alpha)-\beta\)
2 \(-\left(\beta+P_{50}(\alpha)\right)\)
3 \(\beta+P_{50}(\alpha)\)
4 \(\beta-P_{50}(\alpha)\)
Integral Calculus

86784 Let \(I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3 \ldots\) Then

1 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
2 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
3 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
4 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86778 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-

1 \(\left(3, \frac{27}{4}\right)\)
2 \(\left(3, \frac{23}{4}\right)\)
3 \(\left(4, \frac{27}{4}\right)\)
4 \(\left(4, \frac{23}{4}\right)\)
Integral Calculus

86779 For any integer \(n\), the integral
\(\int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x\) has the value

1 1
2 \(\pi\)
3 \(2 \pi\)
4 None of these
Integral Calculus

86782 \(\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x=f(x) e^{x}+C\), Where \(C\) is a constant, then \(\frac{d^{3} f}{d x^{3}}\) at \(x=1\) is equal to :

1 \(-\frac{3}{4}\)
2 \(\frac{3}{4}\)
3 \(-\frac{3}{2}\)
4 \(\frac{3}{2}\)
Integral Calculus

86783 Let \(\alpha \in(0,1)\) and \(\beta=\log _{e}(1-\alpha)\). Let \(P_{n}(x)=x\) \(+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots . .+\frac{x^{n}}{n}, x \in(0,1) . \quad\) Then the integral \(\int_{0}^{a} \frac{\mathbf{t}^{50}}{1-\mathbf{t}} \mathbf{d t}\) is equal to

1 \(\mathrm{P}_{50}(\alpha)-\beta\)
2 \(-\left(\beta+P_{50}(\alpha)\right)\)
3 \(\beta+P_{50}(\alpha)\)
4 \(\beta-P_{50}(\alpha)\)
Integral Calculus

86784 Let \(I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3 \ldots\) Then

1 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
2 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
3 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
4 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
Integral Calculus

86778 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-

1 \(\left(3, \frac{27}{4}\right)\)
2 \(\left(3, \frac{23}{4}\right)\)
3 \(\left(4, \frac{27}{4}\right)\)
4 \(\left(4, \frac{23}{4}\right)\)
Integral Calculus

86779 For any integer \(n\), the integral
\(\int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x\) has the value

1 1
2 \(\pi\)
3 \(2 \pi\)
4 None of these
Integral Calculus

86782 \(\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x=f(x) e^{x}+C\), Where \(C\) is a constant, then \(\frac{d^{3} f}{d x^{3}}\) at \(x=1\) is equal to :

1 \(-\frac{3}{4}\)
2 \(\frac{3}{4}\)
3 \(-\frac{3}{2}\)
4 \(\frac{3}{2}\)
Integral Calculus

86783 Let \(\alpha \in(0,1)\) and \(\beta=\log _{e}(1-\alpha)\). Let \(P_{n}(x)=x\) \(+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots . .+\frac{x^{n}}{n}, x \in(0,1) . \quad\) Then the integral \(\int_{0}^{a} \frac{\mathbf{t}^{50}}{1-\mathbf{t}} \mathbf{d t}\) is equal to

1 \(\mathrm{P}_{50}(\alpha)-\beta\)
2 \(-\left(\beta+P_{50}(\alpha)\right)\)
3 \(\beta+P_{50}(\alpha)\)
4 \(\beta-P_{50}(\alpha)\)
Integral Calculus

86784 Let \(I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3 \ldots\) Then

1 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
2 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
3 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
4 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
Integral Calculus

86778 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-

1 \(\left(3, \frac{27}{4}\right)\)
2 \(\left(3, \frac{23}{4}\right)\)
3 \(\left(4, \frac{27}{4}\right)\)
4 \(\left(4, \frac{23}{4}\right)\)
Integral Calculus

86779 For any integer \(n\), the integral
\(\int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x\) has the value

1 1
2 \(\pi\)
3 \(2 \pi\)
4 None of these
Integral Calculus

86782 \(\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x=f(x) e^{x}+C\), Where \(C\) is a constant, then \(\frac{d^{3} f}{d x^{3}}\) at \(x=1\) is equal to :

1 \(-\frac{3}{4}\)
2 \(\frac{3}{4}\)
3 \(-\frac{3}{2}\)
4 \(\frac{3}{2}\)
Integral Calculus

86783 Let \(\alpha \in(0,1)\) and \(\beta=\log _{e}(1-\alpha)\). Let \(P_{n}(x)=x\) \(+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots . .+\frac{x^{n}}{n}, x \in(0,1) . \quad\) Then the integral \(\int_{0}^{a} \frac{\mathbf{t}^{50}}{1-\mathbf{t}} \mathbf{d t}\) is equal to

1 \(\mathrm{P}_{50}(\alpha)-\beta\)
2 \(-\left(\beta+P_{50}(\alpha)\right)\)
3 \(\beta+P_{50}(\alpha)\)
4 \(\beta-P_{50}(\alpha)\)
Integral Calculus

86784 Let \(I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3 \ldots\) Then

1 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
2 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}\)
3 \(50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)
4 \(50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}\)