86778
Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-
86778
Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-
86778
Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-
86778
Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-
86778
Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a function defined by :
\(f(x)= \begin{cases}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\ t \leq x ; x \leq 2 \\ x^{2}+2 x-6 ; 2\lt x\lt 3 \\ {[x-3]+9} ; 3 \leq x \leq 5 \\ 2 x+1 ; x>5\end{cases}\)
Where \([t]\) is the greatest integer less than or equal to \(t\). Let \(\mathbf{m}\) be the number of points where
\(f\) is not differentiable and \(I=\int_{-2}^{2} f(x) d x\). Then the ordered pair \((m, I)\) is equal to :-