Leibnitz's Rules
Integral Calculus

86774 The value of integral \(\int_{0}^{\pi / 2} \frac{\phi(x)}{\phi(x)+\phi(\pi / 2-x)} d x\) is

1 \(\pi / 4\)
2 \(\pi / 2\)
3 \(\pi\)
4 None of these
Integral Calculus

86775 Evaluate : \(\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}}\).

1 \(\pi / 4\)
2 \(\pi\)
3 \(\pi / 2\)
4 \(\pi / 3\)
Integral Calculus

86776 Evaluate \(\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} d x\)

1 \(\pi / 2\)
2 \(\pi / 4\)
3 \(\pi / 3\)
4 \(\pi\)
Integral Calculus

86777 \(\int_{0}^{\pi}[\operatorname{cotx}] d x,\)\([.]\). denotes the greatest integer function, is equal to

1 \(\frac{\pi}{2}\)
2 1
3 -1
4 \(-\frac{\pi}{2}\)
Integral Calculus

86774 The value of integral \(\int_{0}^{\pi / 2} \frac{\phi(x)}{\phi(x)+\phi(\pi / 2-x)} d x\) is

1 \(\pi / 4\)
2 \(\pi / 2\)
3 \(\pi\)
4 None of these
Integral Calculus

86775 Evaluate : \(\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}}\).

1 \(\pi / 4\)
2 \(\pi\)
3 \(\pi / 2\)
4 \(\pi / 3\)
Integral Calculus

86776 Evaluate \(\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} d x\)

1 \(\pi / 2\)
2 \(\pi / 4\)
3 \(\pi / 3\)
4 \(\pi\)
Integral Calculus

86777 \(\int_{0}^{\pi}[\operatorname{cotx}] d x,\)\([.]\). denotes the greatest integer function, is equal to

1 \(\frac{\pi}{2}\)
2 1
3 -1
4 \(-\frac{\pi}{2}\)
Integral Calculus

86774 The value of integral \(\int_{0}^{\pi / 2} \frac{\phi(x)}{\phi(x)+\phi(\pi / 2-x)} d x\) is

1 \(\pi / 4\)
2 \(\pi / 2\)
3 \(\pi\)
4 None of these
Integral Calculus

86775 Evaluate : \(\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}}\).

1 \(\pi / 4\)
2 \(\pi\)
3 \(\pi / 2\)
4 \(\pi / 3\)
Integral Calculus

86776 Evaluate \(\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} d x\)

1 \(\pi / 2\)
2 \(\pi / 4\)
3 \(\pi / 3\)
4 \(\pi\)
Integral Calculus

86777 \(\int_{0}^{\pi}[\operatorname{cotx}] d x,\)\([.]\). denotes the greatest integer function, is equal to

1 \(\frac{\pi}{2}\)
2 1
3 -1
4 \(-\frac{\pi}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86774 The value of integral \(\int_{0}^{\pi / 2} \frac{\phi(x)}{\phi(x)+\phi(\pi / 2-x)} d x\) is

1 \(\pi / 4\)
2 \(\pi / 2\)
3 \(\pi\)
4 None of these
Integral Calculus

86775 Evaluate : \(\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}}\).

1 \(\pi / 4\)
2 \(\pi\)
3 \(\pi / 2\)
4 \(\pi / 3\)
Integral Calculus

86776 Evaluate \(\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} d x\)

1 \(\pi / 2\)
2 \(\pi / 4\)
3 \(\pi / 3\)
4 \(\pi\)
Integral Calculus

86777 \(\int_{0}^{\pi}[\operatorname{cotx}] d x,\)\([.]\). denotes the greatest integer function, is equal to

1 \(\frac{\pi}{2}\)
2 1
3 -1
4 \(-\frac{\pi}{2}\)