86751 For x>0, If f(x)=∫1xloget(1+t)dt, then f(e)+f(1e) is equal to
(C) : Given,f(x)=∫1xloget(1+t)dtf(e)=∫1eloget1+tdtf(1e)=∫11/eloget1+tdtLet, t=1u and putting in equation (ii), we get-f(1e)=∫1elog(1u)1+1u×−1u2du=∫1eloguu(u+1)duUsing change of variablef(1e)=∫1e(logt)t(t+1)dtFrom equation (i) and (iii), we get-f(e)+f(1e)=∫1elogt1+tdt+∫1elogtt(1+t)⋅dt=∫1elogttdtLet,logt=v Then, 1tdt=dvf(e)+f(1e)=∫01vdv=[v22]01=12
86752 ∫0π/41−sin2xdx=
(C) : Given,I=∫0π41−sin2xdx=∫0π4sin2x+cos2x−2sinx⋅cosxdx=∫0π4(cosx−sinx)2dx=[sinx+cos]0π/4=(sinπ/4+cosπ/4)−(sin0∘−cos0∘)=12+12−(0−1)=22+1=2+1
86753 The value of ∫−ππcos2x1+axdx,a>0 is
(C) : Given,I=∫−ππcos2x1+axdx∵∫abf(x)=∫abf(a+b−x)dxI=∫−ππcos2(π−π−x)1+a(π−π−x)dxI=∫−ππcos2(−x)1+a−xdx⇒I=∫−ππcos2(−x)1+1axI=∫−ππaxcos2(−x)1+axAdding equation (i) and (ii), we get -2I=∫−ππ(1+ax)cos2x1+axdx=∫−ππcos2xdxLet, f(x)=cos2xf(−x)=cos2(−x)=cos2x=f(x)∵f(x) is even function∴2I=2∫0πcos2xdxI=∫0πcos2xdxI=2∫0π/2cos2xdxI=∫0π/2(cos2x+1)dx=(sin2x2+x)0π/2=0+π2−0=π2
86754 If ∫0π2cotxcotx+cosecxdx=m(π+n), then ( m⋅n) equal
(C) : Given,∫0π/2cotxcotx+cosecxdx=m(π+n)Let, I=∫0π/2cotxcotx+cosecxdx =∫0π/2cosxsinxcosxsinx+1sinxdx=∫0π/2cosxcosx+1dx=∫0π/22cos2x/2−12cos2x/2−1+1dx=∫0π/22cos2x/2−12cos2x/2dx=∫0π/21.dx−12∫0π/2sec2x/2dx=∫0π/21⋅dx−12∫0π/2sec2x/2dx=[x]0π/2−12[2tanx/2]0π/2=[π2−0]−[tanπ4−tan0]=π2−1I=12(π−2)From equation (i), we get -m(π+n)=12(π−2)Comparing both side we get -m=12,n=−2Now, m.n=12×−2=−1