Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86751 For x>0, If f(x)=1xloget(1+t)dt, then f(e)+f(1e) is equal to

1 1
2 -1
3 12
4 0
Integral Calculus

86753 The value of ππcos2x1+axdx,a>0 is

1 π
2 2π
3 π2
4 aπ
Integral Calculus

86754 If 0π2cotxcotx+cosecxdx=m(π+n), then ( mn) equal

1 1
2 12
3 -1
4 +1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86751 For x>0, If f(x)=1xloget(1+t)dt, then f(e)+f(1e) is equal to

1 1
2 -1
3 12
4 0
Integral Calculus

86752 0π/41sin2xdx=

1 1+22
2 21
3 2+1
4 221
Integral Calculus

86753 The value of ππcos2x1+axdx,a>0 is

1 π
2 2π
3 π2
4 aπ
Integral Calculus

86754 If 0π2cotxcotx+cosecxdx=m(π+n), then ( mn) equal

1 1
2 12
3 -1
4 +1
Integral Calculus

86751 For x>0, If f(x)=1xloget(1+t)dt, then f(e)+f(1e) is equal to

1 1
2 -1
3 12
4 0
Integral Calculus

86752 0π/41sin2xdx=

1 1+22
2 21
3 2+1
4 221
Integral Calculus

86753 The value of ππcos2x1+axdx,a>0 is

1 π
2 2π
3 π2
4 aπ
Integral Calculus

86754 If 0π2cotxcotx+cosecxdx=m(π+n), then ( mn) equal

1 1
2 12
3 -1
4 +1
Integral Calculus

86751 For x>0, If f(x)=1xloget(1+t)dt, then f(e)+f(1e) is equal to

1 1
2 -1
3 12
4 0
Integral Calculus

86752 0π/41sin2xdx=

1 1+22
2 21
3 2+1
4 221
Integral Calculus

86753 The value of ππcos2x1+axdx,a>0 is

1 π
2 2π
3 π2
4 aπ
Integral Calculus

86754 If 0π2cotxcotx+cosecxdx=m(π+n), then ( mn) equal

1 1
2 12
3 -1
4 +1