Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86755 \(\int_{0}^{2 \pi}(\sin x+|\sin x|) d x=\)

1 8
2 1
3 4
4 0
Integral Calculus

86756 \(\int_{-\pi / 2}^{\pi / 2} f(x) d x\)
Where \(f(x)=\sin [x]+\cos [x], x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\),

1 4
2 8
3 0
4 2
Integral Calculus

86757 \(\int_{0}^{2}[2 x] d x=\)
(where [.] denotes the greatest integer function)

1 3
2 2
3 5
4 4
Integral Calculus

86759 If \(f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]\) then \(\int_{1}^{4} f(x) d x=\)

1 \(\frac{9}{2}\)
2 7
3 \(\frac{19}{2}\)
4 \(\frac{1}{2}\)
Integral Calculus

86760 \(\int_{2}^{5} 2[x] d x=\)
\(\{\) where \([x]\) denotes the greatest integer function \(\leq \mathrm{x}\}\)

1 18
2 24
3 12
4 16
Integral Calculus

86755 \(\int_{0}^{2 \pi}(\sin x+|\sin x|) d x=\)

1 8
2 1
3 4
4 0
Integral Calculus

86756 \(\int_{-\pi / 2}^{\pi / 2} f(x) d x\)
Where \(f(x)=\sin [x]+\cos [x], x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\),

1 4
2 8
3 0
4 2
Integral Calculus

86757 \(\int_{0}^{2}[2 x] d x=\)
(where [.] denotes the greatest integer function)

1 3
2 2
3 5
4 4
Integral Calculus

86759 If \(f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]\) then \(\int_{1}^{4} f(x) d x=\)

1 \(\frac{9}{2}\)
2 7
3 \(\frac{19}{2}\)
4 \(\frac{1}{2}\)
Integral Calculus

86760 \(\int_{2}^{5} 2[x] d x=\)
\(\{\) where \([x]\) denotes the greatest integer function \(\leq \mathrm{x}\}\)

1 18
2 24
3 12
4 16
Integral Calculus

86755 \(\int_{0}^{2 \pi}(\sin x+|\sin x|) d x=\)

1 8
2 1
3 4
4 0
Integral Calculus

86756 \(\int_{-\pi / 2}^{\pi / 2} f(x) d x\)
Where \(f(x)=\sin [x]+\cos [x], x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\),

1 4
2 8
3 0
4 2
Integral Calculus

86757 \(\int_{0}^{2}[2 x] d x=\)
(where [.] denotes the greatest integer function)

1 3
2 2
3 5
4 4
Integral Calculus

86759 If \(f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]\) then \(\int_{1}^{4} f(x) d x=\)

1 \(\frac{9}{2}\)
2 7
3 \(\frac{19}{2}\)
4 \(\frac{1}{2}\)
Integral Calculus

86760 \(\int_{2}^{5} 2[x] d x=\)
\(\{\) where \([x]\) denotes the greatest integer function \(\leq \mathrm{x}\}\)

1 18
2 24
3 12
4 16
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86755 \(\int_{0}^{2 \pi}(\sin x+|\sin x|) d x=\)

1 8
2 1
3 4
4 0
Integral Calculus

86756 \(\int_{-\pi / 2}^{\pi / 2} f(x) d x\)
Where \(f(x)=\sin [x]+\cos [x], x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\),

1 4
2 8
3 0
4 2
Integral Calculus

86757 \(\int_{0}^{2}[2 x] d x=\)
(where [.] denotes the greatest integer function)

1 3
2 2
3 5
4 4
Integral Calculus

86759 If \(f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]\) then \(\int_{1}^{4} f(x) d x=\)

1 \(\frac{9}{2}\)
2 7
3 \(\frac{19}{2}\)
4 \(\frac{1}{2}\)
Integral Calculus

86760 \(\int_{2}^{5} 2[x] d x=\)
\(\{\) where \([x]\) denotes the greatest integer function \(\leq \mathrm{x}\}\)

1 18
2 24
3 12
4 16
Integral Calculus

86755 \(\int_{0}^{2 \pi}(\sin x+|\sin x|) d x=\)

1 8
2 1
3 4
4 0
Integral Calculus

86756 \(\int_{-\pi / 2}^{\pi / 2} f(x) d x\)
Where \(f(x)=\sin [x]+\cos [x], x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\),

1 4
2 8
3 0
4 2
Integral Calculus

86757 \(\int_{0}^{2}[2 x] d x=\)
(where [.] denotes the greatest integer function)

1 3
2 2
3 5
4 4
Integral Calculus

86759 If \(f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]\) then \(\int_{1}^{4} f(x) d x=\)

1 \(\frac{9}{2}\)
2 7
3 \(\frac{19}{2}\)
4 \(\frac{1}{2}\)
Integral Calculus

86760 \(\int_{2}^{5} 2[x] d x=\)
\(\{\) where \([x]\) denotes the greatest integer function \(\leq \mathrm{x}\}\)

1 18
2 24
3 12
4 16