Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86751 For \(x>0\), If \(f(x)=\int_{1}^{x} \frac{\log _{e} t}{(1+t)} d t\), then \(f(e)+f\left(\frac{1}{e}\right)\) is equal to

1 1
2 -1
3 \(\frac{1}{2}\)
4 0
Integral Calculus

86752 \(\int_{0}^{\pi / 4} \sqrt{1-\sin 2 x} d x=\)

1 \(1+2 \sqrt{2}\)
2 \(\sqrt{2}-1\)
3 \(\sqrt{2}+1\)
4 \(2 \sqrt{2}-1\)
Integral Calculus

86753 The value of \(\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0\) is

1 \(\pi\)
2 \(2 \pi\)
3 \(\frac{\pi}{2}\)
4 \(a \pi\)
Integral Calculus

86754 If \(\int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\cot x+\operatorname{cosec} x} d x=m(\pi+n)\), then ( \(\left.m \cdot n\right)\) equal

1 1
2 \(-\frac{1}{2}\)
3 -1
4 +1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86751 For \(x>0\), If \(f(x)=\int_{1}^{x} \frac{\log _{e} t}{(1+t)} d t\), then \(f(e)+f\left(\frac{1}{e}\right)\) is equal to

1 1
2 -1
3 \(\frac{1}{2}\)
4 0
Integral Calculus

86752 \(\int_{0}^{\pi / 4} \sqrt{1-\sin 2 x} d x=\)

1 \(1+2 \sqrt{2}\)
2 \(\sqrt{2}-1\)
3 \(\sqrt{2}+1\)
4 \(2 \sqrt{2}-1\)
Integral Calculus

86753 The value of \(\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0\) is

1 \(\pi\)
2 \(2 \pi\)
3 \(\frac{\pi}{2}\)
4 \(a \pi\)
Integral Calculus

86754 If \(\int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\cot x+\operatorname{cosec} x} d x=m(\pi+n)\), then ( \(\left.m \cdot n\right)\) equal

1 1
2 \(-\frac{1}{2}\)
3 -1
4 +1
Integral Calculus

86751 For \(x>0\), If \(f(x)=\int_{1}^{x} \frac{\log _{e} t}{(1+t)} d t\), then \(f(e)+f\left(\frac{1}{e}\right)\) is equal to

1 1
2 -1
3 \(\frac{1}{2}\)
4 0
Integral Calculus

86752 \(\int_{0}^{\pi / 4} \sqrt{1-\sin 2 x} d x=\)

1 \(1+2 \sqrt{2}\)
2 \(\sqrt{2}-1\)
3 \(\sqrt{2}+1\)
4 \(2 \sqrt{2}-1\)
Integral Calculus

86753 The value of \(\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0\) is

1 \(\pi\)
2 \(2 \pi\)
3 \(\frac{\pi}{2}\)
4 \(a \pi\)
Integral Calculus

86754 If \(\int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\cot x+\operatorname{cosec} x} d x=m(\pi+n)\), then ( \(\left.m \cdot n\right)\) equal

1 1
2 \(-\frac{1}{2}\)
3 -1
4 +1
Integral Calculus

86751 For \(x>0\), If \(f(x)=\int_{1}^{x} \frac{\log _{e} t}{(1+t)} d t\), then \(f(e)+f\left(\frac{1}{e}\right)\) is equal to

1 1
2 -1
3 \(\frac{1}{2}\)
4 0
Integral Calculus

86752 \(\int_{0}^{\pi / 4} \sqrt{1-\sin 2 x} d x=\)

1 \(1+2 \sqrt{2}\)
2 \(\sqrt{2}-1\)
3 \(\sqrt{2}+1\)
4 \(2 \sqrt{2}-1\)
Integral Calculus

86753 The value of \(\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0\) is

1 \(\pi\)
2 \(2 \pi\)
3 \(\frac{\pi}{2}\)
4 \(a \pi\)
Integral Calculus

86754 If \(\int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\cot x+\operatorname{cosec} x} d x=m(\pi+n)\), then ( \(\left.m \cdot n\right)\) equal

1 1
2 \(-\frac{1}{2}\)
3 -1
4 +1