Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86761 The value of \(\int_{-\pi}^{\pi} \frac{\sin ^{2} x}{1+7^{x}} d x\) is equal to

1 \(7^{\pi}\)
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(2^{\pi}\)
5 \(7 \pi\)
Integral Calculus

86762 \(\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{3} x}\) is equal to

1 1
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
5 0
Integral Calculus

86763 \(\int_{0}^{\pi / 2} \frac{\sin 2 x}{1+2 \cos ^{2} x} d x\) is equal to

1 \(\frac{1}{2} \log 2\)
2 \(\log 2\)
3 \(\frac{1}{2} \log 3\)
4 \(\log 3\)
5 \(\frac{1}{3} \log 3\)
Integral Calculus

86705 The value of \(\int_{0}^{\sqrt{2}}\left[x^{2}\right] \mathrm{dx}\), where \([\cdot]\) is the greatest integer function, is

1 \(2-\sqrt{2}\)
2 \(2+\sqrt{2}\)
3 \(\sqrt{2}-1\)
4 \(\sqrt{2}-2\)
Integral Calculus

86761 The value of \(\int_{-\pi}^{\pi} \frac{\sin ^{2} x}{1+7^{x}} d x\) is equal to

1 \(7^{\pi}\)
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(2^{\pi}\)
5 \(7 \pi\)
Integral Calculus

86762 \(\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{3} x}\) is equal to

1 1
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
5 0
Integral Calculus

86763 \(\int_{0}^{\pi / 2} \frac{\sin 2 x}{1+2 \cos ^{2} x} d x\) is equal to

1 \(\frac{1}{2} \log 2\)
2 \(\log 2\)
3 \(\frac{1}{2} \log 3\)
4 \(\log 3\)
5 \(\frac{1}{3} \log 3\)
Integral Calculus

86705 The value of \(\int_{0}^{\sqrt{2}}\left[x^{2}\right] \mathrm{dx}\), where \([\cdot]\) is the greatest integer function, is

1 \(2-\sqrt{2}\)
2 \(2+\sqrt{2}\)
3 \(\sqrt{2}-1\)
4 \(\sqrt{2}-2\)
Integral Calculus

86761 The value of \(\int_{-\pi}^{\pi} \frac{\sin ^{2} x}{1+7^{x}} d x\) is equal to

1 \(7^{\pi}\)
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(2^{\pi}\)
5 \(7 \pi\)
Integral Calculus

86762 \(\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{3} x}\) is equal to

1 1
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
5 0
Integral Calculus

86763 \(\int_{0}^{\pi / 2} \frac{\sin 2 x}{1+2 \cos ^{2} x} d x\) is equal to

1 \(\frac{1}{2} \log 2\)
2 \(\log 2\)
3 \(\frac{1}{2} \log 3\)
4 \(\log 3\)
5 \(\frac{1}{3} \log 3\)
Integral Calculus

86705 The value of \(\int_{0}^{\sqrt{2}}\left[x^{2}\right] \mathrm{dx}\), where \([\cdot]\) is the greatest integer function, is

1 \(2-\sqrt{2}\)
2 \(2+\sqrt{2}\)
3 \(\sqrt{2}-1\)
4 \(\sqrt{2}-2\)
Integral Calculus

86761 The value of \(\int_{-\pi}^{\pi} \frac{\sin ^{2} x}{1+7^{x}} d x\) is equal to

1 \(7^{\pi}\)
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(2^{\pi}\)
5 \(7 \pi\)
Integral Calculus

86762 \(\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{3} x}\) is equal to

1 1
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
5 0
Integral Calculus

86763 \(\int_{0}^{\pi / 2} \frac{\sin 2 x}{1+2 \cos ^{2} x} d x\) is equal to

1 \(\frac{1}{2} \log 2\)
2 \(\log 2\)
3 \(\frac{1}{2} \log 3\)
4 \(\log 3\)
5 \(\frac{1}{3} \log 3\)
Integral Calculus

86705 The value of \(\int_{0}^{\sqrt{2}}\left[x^{2}\right] \mathrm{dx}\), where \([\cdot]\) is the greatest integer function, is

1 \(2-\sqrt{2}\)
2 \(2+\sqrt{2}\)
3 \(\sqrt{2}-1\)
4 \(\sqrt{2}-2\)