86761 The value of ∫−ππsin2x1+7xdx is equal to
(C) : Given,I=∫−ππsin2x1+7xdxI=∫−ππsin2(π−π−x)1+7(π−π−x)dxI=∫−ππsin2(−x)1+7−xdxI=∫−ππ7xsin2x7x+1dxFrom equation (i) and (ii), we get-2I=∫−ππ(1+7)xsin2x(1+7x)dx2I=∫0π/2sin2xdx2I=∫−ππ(12−12cos2x)dx=12∫−ππdx−12∫−ππcos2xdx=12[x]−ππ−14[sin2x]−ππ2I=12[π+π]−14[sin2π−sin(−2π)]2I=π⇒I=π2
86762 ∫0π/2dx1+tan3x is equal to
(D) : Given,I=∫0π/2dx1+tan3xI=∫0π/2dx1+tan3(π2−x)I=∫0π/2dx1+cot3xI=∫0π/2dx1+1tan3xdxI=∫0π/2tan3x1+tan3xdxFrom equation (i) and (ii) we get-2I=∫0π/21+tan3x1+tan3xdx2I=∫0π/2dx2I=[x]0π2I=12[π2−0]=π4
86763 ∫0π/2sin2x1+2cos2xdx is equal to
(C) : Given,I=∫0π/2sin2x1+2cos2xdx=∫0π/2sin2x1+2cos2x−1+1dx=∫0π/2sin2x2+cos2xdx(2cos2x−1=cos2x)2+cos2x=t−2sin2xdx=dtsin2xdx=−12dtWhen, x=0,t=3x=π2,t=1Now, I=−12∫311tdt=−12[logt]31=−12[log1−log3]=12log3
86705 The value of ∫02[x2]dx, where [⋅] is the greatest integer function, is
(C) : Let ,I=∫02[x2]dx=∫01[x2]dx+∫12[x2]dx=∫010dx+∫121dx=[x]12I=2−1