Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86748 \(\int_{-1}^{1} \cot ^{-1} x d x=\)

1 0
2 \(\frac{\pi}{2}\)
3 \(\pi\)
4 \(2 \pi\)
Integral Calculus

86749 \(\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{3} x \cdot \cos ^{3} x}{\cos ^{2} x-\sin ^{2} x} d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 0
4 \(-\pi\)
Integral Calculus

86750 Let \(f(x)\) be a function satisfying \(f(x)+f(\pi-x)=\) \(\pi^{2}, \forall \in \mathbf{R}\). Then \(\int_{0}^{\pi} f(x) \sin x d x\) is equal to

1 \(\frac{\pi^{2}}{4}\)
2 \(\frac{\pi^{2}}{2}\)
3 \(2 \pi^{2}\)
4 \(\pi^{2}\)
Integral Calculus

86758 \(\int_{0}^{\frac{\pi}{2}} \sin ^{5}\left(\frac{x}{2}\right) \cdot \sin x d x=\)

1 \(\frac{1}{14 \sqrt{2}}\)
2 \(\frac{1}{7 \sqrt{2}}\)
3 \(\frac{1}{28 \sqrt{2}}\)
4 \(\frac{1}{56 \sqrt{2}}\)
Integral Calculus

86748 \(\int_{-1}^{1} \cot ^{-1} x d x=\)

1 0
2 \(\frac{\pi}{2}\)
3 \(\pi\)
4 \(2 \pi\)
Integral Calculus

86749 \(\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{3} x \cdot \cos ^{3} x}{\cos ^{2} x-\sin ^{2} x} d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 0
4 \(-\pi\)
Integral Calculus

86750 Let \(f(x)\) be a function satisfying \(f(x)+f(\pi-x)=\) \(\pi^{2}, \forall \in \mathbf{R}\). Then \(\int_{0}^{\pi} f(x) \sin x d x\) is equal to

1 \(\frac{\pi^{2}}{4}\)
2 \(\frac{\pi^{2}}{2}\)
3 \(2 \pi^{2}\)
4 \(\pi^{2}\)
Integral Calculus

86758 \(\int_{0}^{\frac{\pi}{2}} \sin ^{5}\left(\frac{x}{2}\right) \cdot \sin x d x=\)

1 \(\frac{1}{14 \sqrt{2}}\)
2 \(\frac{1}{7 \sqrt{2}}\)
3 \(\frac{1}{28 \sqrt{2}}\)
4 \(\frac{1}{56 \sqrt{2}}\)
Integral Calculus

86748 \(\int_{-1}^{1} \cot ^{-1} x d x=\)

1 0
2 \(\frac{\pi}{2}\)
3 \(\pi\)
4 \(2 \pi\)
Integral Calculus

86749 \(\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{3} x \cdot \cos ^{3} x}{\cos ^{2} x-\sin ^{2} x} d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 0
4 \(-\pi\)
Integral Calculus

86750 Let \(f(x)\) be a function satisfying \(f(x)+f(\pi-x)=\) \(\pi^{2}, \forall \in \mathbf{R}\). Then \(\int_{0}^{\pi} f(x) \sin x d x\) is equal to

1 \(\frac{\pi^{2}}{4}\)
2 \(\frac{\pi^{2}}{2}\)
3 \(2 \pi^{2}\)
4 \(\pi^{2}\)
Integral Calculus

86758 \(\int_{0}^{\frac{\pi}{2}} \sin ^{5}\left(\frac{x}{2}\right) \cdot \sin x d x=\)

1 \(\frac{1}{14 \sqrt{2}}\)
2 \(\frac{1}{7 \sqrt{2}}\)
3 \(\frac{1}{28 \sqrt{2}}\)
4 \(\frac{1}{56 \sqrt{2}}\)
Integral Calculus

86748 \(\int_{-1}^{1} \cot ^{-1} x d x=\)

1 0
2 \(\frac{\pi}{2}\)
3 \(\pi\)
4 \(2 \pi\)
Integral Calculus

86749 \(\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{3} x \cdot \cos ^{3} x}{\cos ^{2} x-\sin ^{2} x} d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 0
4 \(-\pi\)
Integral Calculus

86750 Let \(f(x)\) be a function satisfying \(f(x)+f(\pi-x)=\) \(\pi^{2}, \forall \in \mathbf{R}\). Then \(\int_{0}^{\pi} f(x) \sin x d x\) is equal to

1 \(\frac{\pi^{2}}{4}\)
2 \(\frac{\pi^{2}}{2}\)
3 \(2 \pi^{2}\)
4 \(\pi^{2}\)
Integral Calculus

86758 \(\int_{0}^{\frac{\pi}{2}} \sin ^{5}\left(\frac{x}{2}\right) \cdot \sin x d x=\)

1 \(\frac{1}{14 \sqrt{2}}\)
2 \(\frac{1}{7 \sqrt{2}}\)
3 \(\frac{1}{28 \sqrt{2}}\)
4 \(\frac{1}{56 \sqrt{2}}\)