Definite Integrals of Odd, Even and Periodic Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86691 \(\int_{0.2}^{3.5}[x] d x\) is equal to

1 3.5
2 4.5
3 3
4 4
Integral Calculus

86722 \(\int_{-\pi}^{\pi} x^{2}(\sin x) d x=\)

1 \(\pi^{2}\)
2 \(\frac{\pi^{2}}{2}\)
3 0
4 \(2 \pi^{2}\)
Integral Calculus

86727 If \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of the integral \(\int_{0}^{2} x^{2}[x] d x\) equals

1 \(\frac{5}{3}\)
2 \(\frac{7}{3}\)
3 \(\frac{8}{3}\)
4 \(\frac{4}{3}\)
Integral Calculus

86733 \(\int_{0}^{\pi / 8} \tan ^{2}(2 x) d x=\)

1 \(\frac{4-\pi}{8}\)
2 \(\frac{4+\pi}{8}\)
3 \(\frac{4-\pi}{4}\)
4 \(\frac{4-\pi}{2}\)
Integral Calculus

86691 \(\int_{0.2}^{3.5}[x] d x\) is equal to

1 3.5
2 4.5
3 3
4 4
Integral Calculus

86722 \(\int_{-\pi}^{\pi} x^{2}(\sin x) d x=\)

1 \(\pi^{2}\)
2 \(\frac{\pi^{2}}{2}\)
3 0
4 \(2 \pi^{2}\)
Integral Calculus

86727 If \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of the integral \(\int_{0}^{2} x^{2}[x] d x\) equals

1 \(\frac{5}{3}\)
2 \(\frac{7}{3}\)
3 \(\frac{8}{3}\)
4 \(\frac{4}{3}\)
Integral Calculus

86733 \(\int_{0}^{\pi / 8} \tan ^{2}(2 x) d x=\)

1 \(\frac{4-\pi}{8}\)
2 \(\frac{4+\pi}{8}\)
3 \(\frac{4-\pi}{4}\)
4 \(\frac{4-\pi}{2}\)
Integral Calculus

86691 \(\int_{0.2}^{3.5}[x] d x\) is equal to

1 3.5
2 4.5
3 3
4 4
Integral Calculus

86722 \(\int_{-\pi}^{\pi} x^{2}(\sin x) d x=\)

1 \(\pi^{2}\)
2 \(\frac{\pi^{2}}{2}\)
3 0
4 \(2 \pi^{2}\)
Integral Calculus

86727 If \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of the integral \(\int_{0}^{2} x^{2}[x] d x\) equals

1 \(\frac{5}{3}\)
2 \(\frac{7}{3}\)
3 \(\frac{8}{3}\)
4 \(\frac{4}{3}\)
Integral Calculus

86733 \(\int_{0}^{\pi / 8} \tan ^{2}(2 x) d x=\)

1 \(\frac{4-\pi}{8}\)
2 \(\frac{4+\pi}{8}\)
3 \(\frac{4-\pi}{4}\)
4 \(\frac{4-\pi}{2}\)
Integral Calculus

86691 \(\int_{0.2}^{3.5}[x] d x\) is equal to

1 3.5
2 4.5
3 3
4 4
Integral Calculus

86722 \(\int_{-\pi}^{\pi} x^{2}(\sin x) d x=\)

1 \(\pi^{2}\)
2 \(\frac{\pi^{2}}{2}\)
3 0
4 \(2 \pi^{2}\)
Integral Calculus

86727 If \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of the integral \(\int_{0}^{2} x^{2}[x] d x\) equals

1 \(\frac{5}{3}\)
2 \(\frac{7}{3}\)
3 \(\frac{8}{3}\)
4 \(\frac{4}{3}\)
Integral Calculus

86733 \(\int_{0}^{\pi / 8} \tan ^{2}(2 x) d x=\)

1 \(\frac{4-\pi}{8}\)
2 \(\frac{4+\pi}{8}\)
3 \(\frac{4-\pi}{4}\)
4 \(\frac{4-\pi}{2}\)