Theorem of Definite Integrals and its Properties
Integral Calculus

86515 If \(\int_{0}^{1} \tan ^{-1} x d x=p\) then \(\int_{0}^{1} \tan ^{-1}\left(\frac{1-x}{1+x}\right) d x=\)

1 \(\frac{1-\mathrm{p}}{1+\mathrm{p}}\)
2 \(1-\mathrm{p}\)
3 \(\frac{\pi}{4}-\mathrm{p}\)
4 \(\frac{\pi}{4}+\mathrm{p}\)
Integral Calculus

86516 \(\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x=\)

1 \(-\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86517 \(\int_{0}^{\pi / 2} \frac{1}{1+\sqrt{\tan x}} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\pi\)
4 \(2 \pi\)
Integral Calculus

86518 The value of \(\int_{0}^{\pi / 2} \log (\tan x) d x\) is

1 2
2 1
3 0
4 3
Integral Calculus

86515 If \(\int_{0}^{1} \tan ^{-1} x d x=p\) then \(\int_{0}^{1} \tan ^{-1}\left(\frac{1-x}{1+x}\right) d x=\)

1 \(\frac{1-\mathrm{p}}{1+\mathrm{p}}\)
2 \(1-\mathrm{p}\)
3 \(\frac{\pi}{4}-\mathrm{p}\)
4 \(\frac{\pi}{4}+\mathrm{p}\)
Integral Calculus

86516 \(\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x=\)

1 \(-\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86517 \(\int_{0}^{\pi / 2} \frac{1}{1+\sqrt{\tan x}} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\pi\)
4 \(2 \pi\)
Integral Calculus

86518 The value of \(\int_{0}^{\pi / 2} \log (\tan x) d x\) is

1 2
2 1
3 0
4 3
Integral Calculus

86515 If \(\int_{0}^{1} \tan ^{-1} x d x=p\) then \(\int_{0}^{1} \tan ^{-1}\left(\frac{1-x}{1+x}\right) d x=\)

1 \(\frac{1-\mathrm{p}}{1+\mathrm{p}}\)
2 \(1-\mathrm{p}\)
3 \(\frac{\pi}{4}-\mathrm{p}\)
4 \(\frac{\pi}{4}+\mathrm{p}\)
Integral Calculus

86516 \(\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x=\)

1 \(-\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86517 \(\int_{0}^{\pi / 2} \frac{1}{1+\sqrt{\tan x}} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\pi\)
4 \(2 \pi\)
Integral Calculus

86518 The value of \(\int_{0}^{\pi / 2} \log (\tan x) d x\) is

1 2
2 1
3 0
4 3
Integral Calculus

86515 If \(\int_{0}^{1} \tan ^{-1} x d x=p\) then \(\int_{0}^{1} \tan ^{-1}\left(\frac{1-x}{1+x}\right) d x=\)

1 \(\frac{1-\mathrm{p}}{1+\mathrm{p}}\)
2 \(1-\mathrm{p}\)
3 \(\frac{\pi}{4}-\mathrm{p}\)
4 \(\frac{\pi}{4}+\mathrm{p}\)
Integral Calculus

86516 \(\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x=\)

1 \(-\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86517 \(\int_{0}^{\pi / 2} \frac{1}{1+\sqrt{\tan x}} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\pi\)
4 \(2 \pi\)
Integral Calculus

86518 The value of \(\int_{0}^{\pi / 2} \log (\tan x) d x\) is

1 2
2 1
3 0
4 3