Theorem of Definite Integrals and its Properties
Integral Calculus

86511 \(\int_0^{\pi / 2}\left(\frac{\sqrt[n]{\sec x}}{\sqrt[n]{\sec x}+\sqrt[n]{\operatorname{cosec} x}}\right) d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{6}\)
Integral Calculus

86512 \(\int_{0}^{1} x \tan ^{-1} x d x=\)

1 \(\frac{\pi}{4}+\frac{1}{2}\)
2 \(\frac{\pi}{4}-\frac{1}{2}\)
3 \(\frac{-\pi}{4}+\frac{1}{2}\)
4 \(-\frac{\pi}{4}-\frac{1}{2}\)
Integral Calculus

86513 The value of \(\int_{0}^{\infty} \frac{x}{(1+x)\left(x^{2}+1\right)} d x\) is

1 \(2 \pi\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{16}\)
4 \(\frac{\pi}{32}\)
Integral Calculus

86514 \(\int_{0}^{11} \frac{(11-x)^{2}}{x^{2}+(11-x)^{2}} d x=\)

1 2
2 \(\frac{11}{2}\)
3 4
4 \(\frac{1}{2}\)
Integral Calculus

86511 \(\int_0^{\pi / 2}\left(\frac{\sqrt[n]{\sec x}}{\sqrt[n]{\sec x}+\sqrt[n]{\operatorname{cosec} x}}\right) d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{6}\)
Integral Calculus

86512 \(\int_{0}^{1} x \tan ^{-1} x d x=\)

1 \(\frac{\pi}{4}+\frac{1}{2}\)
2 \(\frac{\pi}{4}-\frac{1}{2}\)
3 \(\frac{-\pi}{4}+\frac{1}{2}\)
4 \(-\frac{\pi}{4}-\frac{1}{2}\)
Integral Calculus

86513 The value of \(\int_{0}^{\infty} \frac{x}{(1+x)\left(x^{2}+1\right)} d x\) is

1 \(2 \pi\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{16}\)
4 \(\frac{\pi}{32}\)
Integral Calculus

86514 \(\int_{0}^{11} \frac{(11-x)^{2}}{x^{2}+(11-x)^{2}} d x=\)

1 2
2 \(\frac{11}{2}\)
3 4
4 \(\frac{1}{2}\)
Integral Calculus

86511 \(\int_0^{\pi / 2}\left(\frac{\sqrt[n]{\sec x}}{\sqrt[n]{\sec x}+\sqrt[n]{\operatorname{cosec} x}}\right) d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{6}\)
Integral Calculus

86512 \(\int_{0}^{1} x \tan ^{-1} x d x=\)

1 \(\frac{\pi}{4}+\frac{1}{2}\)
2 \(\frac{\pi}{4}-\frac{1}{2}\)
3 \(\frac{-\pi}{4}+\frac{1}{2}\)
4 \(-\frac{\pi}{4}-\frac{1}{2}\)
Integral Calculus

86513 The value of \(\int_{0}^{\infty} \frac{x}{(1+x)\left(x^{2}+1\right)} d x\) is

1 \(2 \pi\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{16}\)
4 \(\frac{\pi}{32}\)
Integral Calculus

86514 \(\int_{0}^{11} \frac{(11-x)^{2}}{x^{2}+(11-x)^{2}} d x=\)

1 2
2 \(\frac{11}{2}\)
3 4
4 \(\frac{1}{2}\)
Integral Calculus

86511 \(\int_0^{\pi / 2}\left(\frac{\sqrt[n]{\sec x}}{\sqrt[n]{\sec x}+\sqrt[n]{\operatorname{cosec} x}}\right) d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{\pi}{6}\)
Integral Calculus

86512 \(\int_{0}^{1} x \tan ^{-1} x d x=\)

1 \(\frac{\pi}{4}+\frac{1}{2}\)
2 \(\frac{\pi}{4}-\frac{1}{2}\)
3 \(\frac{-\pi}{4}+\frac{1}{2}\)
4 \(-\frac{\pi}{4}-\frac{1}{2}\)
Integral Calculus

86513 The value of \(\int_{0}^{\infty} \frac{x}{(1+x)\left(x^{2}+1\right)} d x\) is

1 \(2 \pi\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{16}\)
4 \(\frac{\pi}{32}\)
Integral Calculus

86514 \(\int_{0}^{11} \frac{(11-x)^{2}}{x^{2}+(11-x)^{2}} d x=\)

1 2
2 \(\frac{11}{2}\)
3 4
4 \(\frac{1}{2}\)