Theorem of Definite Integrals and its Properties
Integral Calculus

86515 If 01tan1xdx=p then 01tan1(1x1+x)dx=

1 1p1+p
2 1p
3 π4p
4 π4+p
Integral Calculus

86516 0π/2sinx+cosx1+sin2xdx=

1 π2
2 π4
3 π2
4 π
Integral Calculus

86517 0π/211+tanxdx=

1 π4
2 π2
3 π
4 2π
Integral Calculus

86518 The value of 0π/2log(tanx)dx is

1 2
2 1
3 0
4 3
Integral Calculus

86515 If 01tan1xdx=p then 01tan1(1x1+x)dx=

1 1p1+p
2 1p
3 π4p
4 π4+p
Integral Calculus

86516 0π/2sinx+cosx1+sin2xdx=

1 π2
2 π4
3 π2
4 π
Integral Calculus

86517 0π/211+tanxdx=

1 π4
2 π2
3 π
4 2π
Integral Calculus

86518 The value of 0π/2log(tanx)dx is

1 2
2 1
3 0
4 3
Integral Calculus

86515 If 01tan1xdx=p then 01tan1(1x1+x)dx=

1 1p1+p
2 1p
3 π4p
4 π4+p
Integral Calculus

86516 0π/2sinx+cosx1+sin2xdx=

1 π2
2 π4
3 π2
4 π
Integral Calculus

86517 0π/211+tanxdx=

1 π4
2 π2
3 π
4 2π
Integral Calculus

86518 The value of 0π/2log(tanx)dx is

1 2
2 1
3 0
4 3
Integral Calculus

86515 If 01tan1xdx=p then 01tan1(1x1+x)dx=

1 1p1+p
2 1p
3 π4p
4 π4+p
Integral Calculus

86516 0π/2sinx+cosx1+sin2xdx=

1 π2
2 π4
3 π2
4 π
Integral Calculus

86517 0π/211+tanxdx=

1 π4
2 π2
3 π
4 2π
Integral Calculus

86518 The value of 0π/2log(tanx)dx is

1 2
2 1
3 0
4 3