Theorem of Definite Integrals and its Properties
Integral Calculus

86506 \(\int_{\frac{\pi}{18}}^{\frac{4 \pi}{9}} \frac{2 \sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\)

1 \(\frac{5 \pi}{18}\)
2 \(\frac{7 \pi}{36}\)
3 \(\frac{5 \pi}{36}\)
4 \(\frac{7 \pi}{18}\)
Integral Calculus

86507 \(\int_{0}^{\pi / 2} \sqrt{\cos \theta} \cdot \sin ^{3} \theta d \theta=\)

1 \(\frac{8}{21}\)
2 \(\frac{-8}{21}\)
3 \(\frac{-20}{21}\)
4 \(\frac{20}{21}\)
Integral Calculus

86508 \(\int_{0}^{4} \frac{1}{1+\sqrt{\mathrm{x}}} \mathrm{dx}=\)

1 \(\log \left(\frac{\mathrm{e}^{4}}{6}\right)\)
2 \(\log \left(\frac{\mathrm{e}^{4}}{9}\right)\)
3 \(\log \left(\frac{\mathrm{e}^{4}}{3}\right)\)
4 \(\log \left(\frac{\mathrm{e}^{4}}{4}\right)\)
Integral Calculus

86509 The value of \(\int_{-3}^{3}\left(a x^{5}+b x^{3}+c x+k\right) d x\) where \(a\),
\(b, c, k\) are constants, depends only on

1 a and \(\mathrm{k}\)
2 a and b
3 a, b and c
4 \(\mathrm{k}\)
Integral Calculus

86510 If \(\int_{0}^{k} \frac{d x}{2+18 x^{2}}=\frac{\pi}{24}\), then the value of \(k\) is

1 3
2 4
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)
Integral Calculus

86506 \(\int_{\frac{\pi}{18}}^{\frac{4 \pi}{9}} \frac{2 \sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\)

1 \(\frac{5 \pi}{18}\)
2 \(\frac{7 \pi}{36}\)
3 \(\frac{5 \pi}{36}\)
4 \(\frac{7 \pi}{18}\)
Integral Calculus

86507 \(\int_{0}^{\pi / 2} \sqrt{\cos \theta} \cdot \sin ^{3} \theta d \theta=\)

1 \(\frac{8}{21}\)
2 \(\frac{-8}{21}\)
3 \(\frac{-20}{21}\)
4 \(\frac{20}{21}\)
Integral Calculus

86508 \(\int_{0}^{4} \frac{1}{1+\sqrt{\mathrm{x}}} \mathrm{dx}=\)

1 \(\log \left(\frac{\mathrm{e}^{4}}{6}\right)\)
2 \(\log \left(\frac{\mathrm{e}^{4}}{9}\right)\)
3 \(\log \left(\frac{\mathrm{e}^{4}}{3}\right)\)
4 \(\log \left(\frac{\mathrm{e}^{4}}{4}\right)\)
Integral Calculus

86509 The value of \(\int_{-3}^{3}\left(a x^{5}+b x^{3}+c x+k\right) d x\) where \(a\),
\(b, c, k\) are constants, depends only on

1 a and \(\mathrm{k}\)
2 a and b
3 a, b and c
4 \(\mathrm{k}\)
Integral Calculus

86510 If \(\int_{0}^{k} \frac{d x}{2+18 x^{2}}=\frac{\pi}{24}\), then the value of \(k\) is

1 3
2 4
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)
Integral Calculus

86506 \(\int_{\frac{\pi}{18}}^{\frac{4 \pi}{9}} \frac{2 \sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\)

1 \(\frac{5 \pi}{18}\)
2 \(\frac{7 \pi}{36}\)
3 \(\frac{5 \pi}{36}\)
4 \(\frac{7 \pi}{18}\)
Integral Calculus

86507 \(\int_{0}^{\pi / 2} \sqrt{\cos \theta} \cdot \sin ^{3} \theta d \theta=\)

1 \(\frac{8}{21}\)
2 \(\frac{-8}{21}\)
3 \(\frac{-20}{21}\)
4 \(\frac{20}{21}\)
Integral Calculus

86508 \(\int_{0}^{4} \frac{1}{1+\sqrt{\mathrm{x}}} \mathrm{dx}=\)

1 \(\log \left(\frac{\mathrm{e}^{4}}{6}\right)\)
2 \(\log \left(\frac{\mathrm{e}^{4}}{9}\right)\)
3 \(\log \left(\frac{\mathrm{e}^{4}}{3}\right)\)
4 \(\log \left(\frac{\mathrm{e}^{4}}{4}\right)\)
Integral Calculus

86509 The value of \(\int_{-3}^{3}\left(a x^{5}+b x^{3}+c x+k\right) d x\) where \(a\),
\(b, c, k\) are constants, depends only on

1 a and \(\mathrm{k}\)
2 a and b
3 a, b and c
4 \(\mathrm{k}\)
Integral Calculus

86510 If \(\int_{0}^{k} \frac{d x}{2+18 x^{2}}=\frac{\pi}{24}\), then the value of \(k\) is

1 3
2 4
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)
Integral Calculus

86506 \(\int_{\frac{\pi}{18}}^{\frac{4 \pi}{9}} \frac{2 \sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\)

1 \(\frac{5 \pi}{18}\)
2 \(\frac{7 \pi}{36}\)
3 \(\frac{5 \pi}{36}\)
4 \(\frac{7 \pi}{18}\)
Integral Calculus

86507 \(\int_{0}^{\pi / 2} \sqrt{\cos \theta} \cdot \sin ^{3} \theta d \theta=\)

1 \(\frac{8}{21}\)
2 \(\frac{-8}{21}\)
3 \(\frac{-20}{21}\)
4 \(\frac{20}{21}\)
Integral Calculus

86508 \(\int_{0}^{4} \frac{1}{1+\sqrt{\mathrm{x}}} \mathrm{dx}=\)

1 \(\log \left(\frac{\mathrm{e}^{4}}{6}\right)\)
2 \(\log \left(\frac{\mathrm{e}^{4}}{9}\right)\)
3 \(\log \left(\frac{\mathrm{e}^{4}}{3}\right)\)
4 \(\log \left(\frac{\mathrm{e}^{4}}{4}\right)\)
Integral Calculus

86509 The value of \(\int_{-3}^{3}\left(a x^{5}+b x^{3}+c x+k\right) d x\) where \(a\),
\(b, c, k\) are constants, depends only on

1 a and \(\mathrm{k}\)
2 a and b
3 a, b and c
4 \(\mathrm{k}\)
Integral Calculus

86510 If \(\int_{0}^{k} \frac{d x}{2+18 x^{2}}=\frac{\pi}{24}\), then the value of \(k\) is

1 3
2 4
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)
Integral Calculus

86506 \(\int_{\frac{\pi}{18}}^{\frac{4 \pi}{9}} \frac{2 \sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\)

1 \(\frac{5 \pi}{18}\)
2 \(\frac{7 \pi}{36}\)
3 \(\frac{5 \pi}{36}\)
4 \(\frac{7 \pi}{18}\)
Integral Calculus

86507 \(\int_{0}^{\pi / 2} \sqrt{\cos \theta} \cdot \sin ^{3} \theta d \theta=\)

1 \(\frac{8}{21}\)
2 \(\frac{-8}{21}\)
3 \(\frac{-20}{21}\)
4 \(\frac{20}{21}\)
Integral Calculus

86508 \(\int_{0}^{4} \frac{1}{1+\sqrt{\mathrm{x}}} \mathrm{dx}=\)

1 \(\log \left(\frac{\mathrm{e}^{4}}{6}\right)\)
2 \(\log \left(\frac{\mathrm{e}^{4}}{9}\right)\)
3 \(\log \left(\frac{\mathrm{e}^{4}}{3}\right)\)
4 \(\log \left(\frac{\mathrm{e}^{4}}{4}\right)\)
Integral Calculus

86509 The value of \(\int_{-3}^{3}\left(a x^{5}+b x^{3}+c x+k\right) d x\) where \(a\),
\(b, c, k\) are constants, depends only on

1 a and \(\mathrm{k}\)
2 a and b
3 a, b and c
4 \(\mathrm{k}\)
Integral Calculus

86510 If \(\int_{0}^{k} \frac{d x}{2+18 x^{2}}=\frac{\pi}{24}\), then the value of \(k\) is

1 3
2 4
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)