Theorem of Definite Integrals and its Properties
Integral Calculus

86491 \(I=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x=k \log 3\) then \(k=\)

1 \(\frac{1}{40}\)
2 \(\frac{1}{20}\)
3 \(\frac{1}{10}\)
4 \(\frac{1}{30}\)
Integral Calculus

86492 \(\int_{0}^{\pi / 2} \frac{\sqrt[3]{\sec x}}{\sqrt[3]{\sec x}+\sqrt[3]{\operatorname{cosec} x}} d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 0
4 \(\frac{-\pi}{4}\)
Integral Calculus

86493 \(\int_{-8}^{8} \frac{x^{5}+x^{3}}{4-x^{2}} d x=\)

1 16
2 -8
3 8
4 0
Integral Calculus

86494 If \(\int_{0}^{\mathrm{a}} \frac{\mathrm{dx}}{1+4 \mathrm{x}^{2}}=\frac{\pi}{8}\), then \(\mathrm{a}=\)

1 2
2 \(\frac{1}{4}\)
3 1
4 \(\frac{1}{2}\)
Integral Calculus

86491 \(I=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x=k \log 3\) then \(k=\)

1 \(\frac{1}{40}\)
2 \(\frac{1}{20}\)
3 \(\frac{1}{10}\)
4 \(\frac{1}{30}\)
Integral Calculus

86492 \(\int_{0}^{\pi / 2} \frac{\sqrt[3]{\sec x}}{\sqrt[3]{\sec x}+\sqrt[3]{\operatorname{cosec} x}} d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 0
4 \(\frac{-\pi}{4}\)
Integral Calculus

86493 \(\int_{-8}^{8} \frac{x^{5}+x^{3}}{4-x^{2}} d x=\)

1 16
2 -8
3 8
4 0
Integral Calculus

86494 If \(\int_{0}^{\mathrm{a}} \frac{\mathrm{dx}}{1+4 \mathrm{x}^{2}}=\frac{\pi}{8}\), then \(\mathrm{a}=\)

1 2
2 \(\frac{1}{4}\)
3 1
4 \(\frac{1}{2}\)
Integral Calculus

86491 \(I=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x=k \log 3\) then \(k=\)

1 \(\frac{1}{40}\)
2 \(\frac{1}{20}\)
3 \(\frac{1}{10}\)
4 \(\frac{1}{30}\)
Integral Calculus

86492 \(\int_{0}^{\pi / 2} \frac{\sqrt[3]{\sec x}}{\sqrt[3]{\sec x}+\sqrt[3]{\operatorname{cosec} x}} d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 0
4 \(\frac{-\pi}{4}\)
Integral Calculus

86493 \(\int_{-8}^{8} \frac{x^{5}+x^{3}}{4-x^{2}} d x=\)

1 16
2 -8
3 8
4 0
Integral Calculus

86494 If \(\int_{0}^{\mathrm{a}} \frac{\mathrm{dx}}{1+4 \mathrm{x}^{2}}=\frac{\pi}{8}\), then \(\mathrm{a}=\)

1 2
2 \(\frac{1}{4}\)
3 1
4 \(\frac{1}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86491 \(I=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x=k \log 3\) then \(k=\)

1 \(\frac{1}{40}\)
2 \(\frac{1}{20}\)
3 \(\frac{1}{10}\)
4 \(\frac{1}{30}\)
Integral Calculus

86492 \(\int_{0}^{\pi / 2} \frac{\sqrt[3]{\sec x}}{\sqrt[3]{\sec x}+\sqrt[3]{\operatorname{cosec} x}} d x=\)

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 0
4 \(\frac{-\pi}{4}\)
Integral Calculus

86493 \(\int_{-8}^{8} \frac{x^{5}+x^{3}}{4-x^{2}} d x=\)

1 16
2 -8
3 8
4 0
Integral Calculus

86494 If \(\int_{0}^{\mathrm{a}} \frac{\mathrm{dx}}{1+4 \mathrm{x}^{2}}=\frac{\pi}{8}\), then \(\mathrm{a}=\)

1 2
2 \(\frac{1}{4}\)
3 1
4 \(\frac{1}{2}\)