Theorem of Definite Integrals and its Properties
Integral Calculus

86487 If \(\int_{0}^{1}\left(5 x^{2}-3 x+k\right) d x=0\), then \(k=\) ?

1 \(\frac{-1}{6}\)
2 \(\frac{1}{3}\)
3 \(\frac{-1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86488 \(\int_{0}^{1} \tan ^{-1}\left[\frac{2 x-1}{1+x-x^{2}}\right] d x=\)

1 \(\frac{\pi}{4}\)
2 0
3 1
4 \(\frac{\pi}{6}\)
Integral Calculus

86489 \(\int_2^3 \frac{d x}{x^2+x}=\)

1 \(\log \left(\frac{3}{2}\right)\)
2 \(\log \left(\frac{8}{9}\right)\)
3 \(\log \left(\frac{3}{4}\right)\)
4 \(\log \left(\frac{9}{8}\right)\)
Integral Calculus

86490 \(\int_0^{\pi / 2} \frac{1-\cot x}{\operatorname{cosec} x+\cos x} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 0
4 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86487 If \(\int_{0}^{1}\left(5 x^{2}-3 x+k\right) d x=0\), then \(k=\) ?

1 \(\frac{-1}{6}\)
2 \(\frac{1}{3}\)
3 \(\frac{-1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86488 \(\int_{0}^{1} \tan ^{-1}\left[\frac{2 x-1}{1+x-x^{2}}\right] d x=\)

1 \(\frac{\pi}{4}\)
2 0
3 1
4 \(\frac{\pi}{6}\)
Integral Calculus

86489 \(\int_2^3 \frac{d x}{x^2+x}=\)

1 \(\log \left(\frac{3}{2}\right)\)
2 \(\log \left(\frac{8}{9}\right)\)
3 \(\log \left(\frac{3}{4}\right)\)
4 \(\log \left(\frac{9}{8}\right)\)
Integral Calculus

86490 \(\int_0^{\pi / 2} \frac{1-\cot x}{\operatorname{cosec} x+\cos x} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 0
4 1
Integral Calculus

86487 If \(\int_{0}^{1}\left(5 x^{2}-3 x+k\right) d x=0\), then \(k=\) ?

1 \(\frac{-1}{6}\)
2 \(\frac{1}{3}\)
3 \(\frac{-1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86488 \(\int_{0}^{1} \tan ^{-1}\left[\frac{2 x-1}{1+x-x^{2}}\right] d x=\)

1 \(\frac{\pi}{4}\)
2 0
3 1
4 \(\frac{\pi}{6}\)
Integral Calculus

86489 \(\int_2^3 \frac{d x}{x^2+x}=\)

1 \(\log \left(\frac{3}{2}\right)\)
2 \(\log \left(\frac{8}{9}\right)\)
3 \(\log \left(\frac{3}{4}\right)\)
4 \(\log \left(\frac{9}{8}\right)\)
Integral Calculus

86490 \(\int_0^{\pi / 2} \frac{1-\cot x}{\operatorname{cosec} x+\cos x} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 0
4 1
Integral Calculus

86487 If \(\int_{0}^{1}\left(5 x^{2}-3 x+k\right) d x=0\), then \(k=\) ?

1 \(\frac{-1}{6}\)
2 \(\frac{1}{3}\)
3 \(\frac{-1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86488 \(\int_{0}^{1} \tan ^{-1}\left[\frac{2 x-1}{1+x-x^{2}}\right] d x=\)

1 \(\frac{\pi}{4}\)
2 0
3 1
4 \(\frac{\pi}{6}\)
Integral Calculus

86489 \(\int_2^3 \frac{d x}{x^2+x}=\)

1 \(\log \left(\frac{3}{2}\right)\)
2 \(\log \left(\frac{8}{9}\right)\)
3 \(\log \left(\frac{3}{4}\right)\)
4 \(\log \left(\frac{9}{8}\right)\)
Integral Calculus

86490 \(\int_0^{\pi / 2} \frac{1-\cot x}{\operatorname{cosec} x+\cos x} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 0
4 1