Definite Integral as Limit of a Sum
Integral Calculus

86454 \(\int_{0}^{10} \frac{x^{10}}{(10-x)^{10}+x^{10}} d x\) is equal to

1 10
2 5
3 2
4 \(\frac{1}{2}\)
5 0
Integral Calculus

86455 \(\int_{0}^{1} x^{-5 x} d x\) is equal to

1 \(\frac{1}{25}-\frac{6 \mathrm{e}^{-5}}{25}\)
2 \(\frac{1}{25}+\frac{6 \mathrm{e}^{-5}}{25}\)
3 \(-\frac{1}{25}-\frac{6 \mathrm{e}^{-5}}{25}\)
4 \(\frac{1}{25}-\frac{1}{5} \mathrm{e}^{-5}\)
5 \(\frac{1}{25}+\frac{1}{5} \mathrm{e}^{-5}\)
Integral Calculus

86456 If \(\int_{0}^{\pi} \mathrm{x} f(\sin \mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{A} \int_{0}^{\pi / 2} f(\sin \mathrm{x}) \mathrm{d} \mathrm{x}\), then \(\mathrm{A}\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{4}\)
4 \(2 \pi\)
5 \(3 \pi\)
Integral Calculus

86457 \(\int_{-1}^{1} \frac{17 x^{5}-x^{4}+29 x^{3}-31 x+1}{x^{2}+1} d x\) is

1 \(4 / 5\)
2 \(5 / 4\)
3 \(4 / 3\)
4 \(3 / 4\)
5 6
Integral Calculus

86454 \(\int_{0}^{10} \frac{x^{10}}{(10-x)^{10}+x^{10}} d x\) is equal to

1 10
2 5
3 2
4 \(\frac{1}{2}\)
5 0
Integral Calculus

86455 \(\int_{0}^{1} x^{-5 x} d x\) is equal to

1 \(\frac{1}{25}-\frac{6 \mathrm{e}^{-5}}{25}\)
2 \(\frac{1}{25}+\frac{6 \mathrm{e}^{-5}}{25}\)
3 \(-\frac{1}{25}-\frac{6 \mathrm{e}^{-5}}{25}\)
4 \(\frac{1}{25}-\frac{1}{5} \mathrm{e}^{-5}\)
5 \(\frac{1}{25}+\frac{1}{5} \mathrm{e}^{-5}\)
Integral Calculus

86456 If \(\int_{0}^{\pi} \mathrm{x} f(\sin \mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{A} \int_{0}^{\pi / 2} f(\sin \mathrm{x}) \mathrm{d} \mathrm{x}\), then \(\mathrm{A}\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{4}\)
4 \(2 \pi\)
5 \(3 \pi\)
Integral Calculus

86457 \(\int_{-1}^{1} \frac{17 x^{5}-x^{4}+29 x^{3}-31 x+1}{x^{2}+1} d x\) is

1 \(4 / 5\)
2 \(5 / 4\)
3 \(4 / 3\)
4 \(3 / 4\)
5 6
Integral Calculus

86454 \(\int_{0}^{10} \frac{x^{10}}{(10-x)^{10}+x^{10}} d x\) is equal to

1 10
2 5
3 2
4 \(\frac{1}{2}\)
5 0
Integral Calculus

86455 \(\int_{0}^{1} x^{-5 x} d x\) is equal to

1 \(\frac{1}{25}-\frac{6 \mathrm{e}^{-5}}{25}\)
2 \(\frac{1}{25}+\frac{6 \mathrm{e}^{-5}}{25}\)
3 \(-\frac{1}{25}-\frac{6 \mathrm{e}^{-5}}{25}\)
4 \(\frac{1}{25}-\frac{1}{5} \mathrm{e}^{-5}\)
5 \(\frac{1}{25}+\frac{1}{5} \mathrm{e}^{-5}\)
Integral Calculus

86456 If \(\int_{0}^{\pi} \mathrm{x} f(\sin \mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{A} \int_{0}^{\pi / 2} f(\sin \mathrm{x}) \mathrm{d} \mathrm{x}\), then \(\mathrm{A}\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{4}\)
4 \(2 \pi\)
5 \(3 \pi\)
Integral Calculus

86457 \(\int_{-1}^{1} \frac{17 x^{5}-x^{4}+29 x^{3}-31 x+1}{x^{2}+1} d x\) is

1 \(4 / 5\)
2 \(5 / 4\)
3 \(4 / 3\)
4 \(3 / 4\)
5 6
Integral Calculus

86454 \(\int_{0}^{10} \frac{x^{10}}{(10-x)^{10}+x^{10}} d x\) is equal to

1 10
2 5
3 2
4 \(\frac{1}{2}\)
5 0
Integral Calculus

86455 \(\int_{0}^{1} x^{-5 x} d x\) is equal to

1 \(\frac{1}{25}-\frac{6 \mathrm{e}^{-5}}{25}\)
2 \(\frac{1}{25}+\frac{6 \mathrm{e}^{-5}}{25}\)
3 \(-\frac{1}{25}-\frac{6 \mathrm{e}^{-5}}{25}\)
4 \(\frac{1}{25}-\frac{1}{5} \mathrm{e}^{-5}\)
5 \(\frac{1}{25}+\frac{1}{5} \mathrm{e}^{-5}\)
Integral Calculus

86456 If \(\int_{0}^{\pi} \mathrm{x} f(\sin \mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{A} \int_{0}^{\pi / 2} f(\sin \mathrm{x}) \mathrm{d} \mathrm{x}\), then \(\mathrm{A}\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{4}\)
4 \(2 \pi\)
5 \(3 \pi\)
Integral Calculus

86457 \(\int_{-1}^{1} \frac{17 x^{5}-x^{4}+29 x^{3}-31 x+1}{x^{2}+1} d x\) is

1 \(4 / 5\)
2 \(5 / 4\)
3 \(4 / 3\)
4 \(3 / 4\)
5 6