86454 ∫010x10(10−x)10+x10dx is equal to
(B) : Given,I=∫010x10(10−x)10+x10dx∵∫abf(x)dx=∫abf(a+b−x)dxI=∫010(10−x)10x10+(10−x)10dxAdding equation (i) and (ii), we get-2I=∫010(10−x)10+x10(10−x)10+x10dx2I=∫0101dx2I=[x]010I=12[10−0]=5
86455 ∫01x−5xdx is equal to
(A) : Given,I=∫01xe−5xdx∵∫xe−5xdx=−x5e−5x−∫1⋅e−5x−5dx=−x5e−5x+15∫e−5xdx=−x5e−5x+15×−15e−5x=−e−5x25(5x+1) So, I=[−e−5x25(5x+1)]01=[−e−525(5×1+1)−(−e025(0+1))]=[−e−525(5×1+1)−(−e025(0+1))]=125−6e−525
86456 If ∫0πxf(sinx)dx=A∫0π/2f(sinx)dx, then A is equal to
(B) : Given,∫0πxf(sinx)dx=A∫0π/2f(sinx)dxLet, I=∫0πxf(sinx)dx=∫0π(π−x)f(sin(π−x))dx(∵∫abf(x)dx=∫abf(a+b−x)dx)I=∫0π(π−x)f(sinx)dxOn adding equation (i )and (ii), we get -2I=π∫0πf(sinx)dx(∵∫0af(x)dx=2∫0a/2f(x)dx)I=π2∫0πf(sinx)dx=π∫0π/2f(sinx)dxA∫0π/2f(sinx)dx=π∫0π/2f(sinx)dxA=π
86457 ∫−1117x5−x4+29x3−31x+1x2+1dx is
(C) : Given,I=∫−1117x5−x4+29x3−31x+1x2+1dx=∫−11(17x5+29x3−31xx2+1−x4−1x2+1)dx=∫−1117x5+29x3−31xx2+1dx−∫−11(x2+1)(x2−1)x2+1dx=∫−1117x5+29x3−31xx2+1dx−∫−11(x2−1)dx=0−2∫01(x2−1)(x2+1)(x2+1)dx=−2[(x33−x)]01=−2[13−1]=43