86328
If \(\int \frac{\cos x d x}{\sin ^{3} x\left(1+\sin ^{6} x\right)^{2 / 3}}=f(x)\left(1+\sin ^{6} x\right)^{1 / \lambda}+C\) where \(C\) is a constant of integration, then is equal \(t\)
86330
The integral \(\int \frac{e^{3 \log _{e} 2 x}+5 e^{2 \log _{e} 2 x}}{e^{4 \log _{e} x}+5 e^{3 \log _{e} x}-7 e^{2 \log _{e} x}} d x \quad x>0\), is equal to (where, \(\boldsymbol{c}\) is a constant of integration)
86328
If \(\int \frac{\cos x d x}{\sin ^{3} x\left(1+\sin ^{6} x\right)^{2 / 3}}=f(x)\left(1+\sin ^{6} x\right)^{1 / \lambda}+C\) where \(C\) is a constant of integration, then is equal \(t\)
86330
The integral \(\int \frac{e^{3 \log _{e} 2 x}+5 e^{2 \log _{e} 2 x}}{e^{4 \log _{e} x}+5 e^{3 \log _{e} x}-7 e^{2 \log _{e} x}} d x \quad x>0\), is equal to (where, \(\boldsymbol{c}\) is a constant of integration)
86328
If \(\int \frac{\cos x d x}{\sin ^{3} x\left(1+\sin ^{6} x\right)^{2 / 3}}=f(x)\left(1+\sin ^{6} x\right)^{1 / \lambda}+C\) where \(C\) is a constant of integration, then is equal \(t\)
86330
The integral \(\int \frac{e^{3 \log _{e} 2 x}+5 e^{2 \log _{e} 2 x}}{e^{4 \log _{e} x}+5 e^{3 \log _{e} x}-7 e^{2 \log _{e} x}} d x \quad x>0\), is equal to (where, \(\boldsymbol{c}\) is a constant of integration)
86328
If \(\int \frac{\cos x d x}{\sin ^{3} x\left(1+\sin ^{6} x\right)^{2 / 3}}=f(x)\left(1+\sin ^{6} x\right)^{1 / \lambda}+C\) where \(C\) is a constant of integration, then is equal \(t\)
86330
The integral \(\int \frac{e^{3 \log _{e} 2 x}+5 e^{2 \log _{e} 2 x}}{e^{4 \log _{e} x}+5 e^{3 \log _{e} x}-7 e^{2 \log _{e} x}} d x \quad x>0\), is equal to (where, \(\boldsymbol{c}\) is a constant of integration)