Integration by Parts
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86319 The integral \(\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x\) is equal to (where \(\mathbf{C}\) is a constant of integration)

1 \(\frac{x^{4}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
2 \(\frac{x^{12}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
3 \(\frac{\mathrm{x}^{4}}{\left(2 \mathrm{x}^{4}+3 \mathrm{x}^{2}+1\right)^{3}}+\mathrm{C}\)
4 \(\frac{x^{12}}{\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
Integral Calculus

86320 The integral
\(\int \frac{\sin ^{2} x \cos ^{2} x}{\left(\sin ^{5} x+\cos ^{3} x \sin ^{2} x+\sin ^{3} x \cos ^{2} x+\cos ^{5} x\right)^{2}} d x\) is equal to

1 \(\frac{1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{C}\)
2 \(\frac{-1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{C}\)
3 \(\frac{1}{1+\cot ^{3} x}+C\)
4 \(\frac{-1}{1+\cot ^{3} x}+C\)
Integral Calculus

86321 If \(\int x^{5} e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+C\), where \(C\) is a constant of integration, then \(f(x)\) is equal to

1 \(-4 x^{3}-1\)
2 \(4 \mathrm{x}^{3}+1\)
3 \(-2 \mathrm{x}^{3}-1\)
4 \(-2 \mathrm{x}^{3}+1\)
Integral Calculus

86327 If \(\int \frac{d \theta}{\cos ^{2} \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{e}|f(\theta)|\) \(+C\) where \(C\) is a constant of integration, then the ordered pair \((\lambda, f(\theta))\) is equal to

1 \((1,1+\tan \theta)\)
2 \((1,1-\tan \theta)\)
3 \((-1,1+\tan \theta)\)
4 \((-1,1-\tan \theta)\)
Integral Calculus

86319 The integral \(\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x\) is equal to (where \(\mathbf{C}\) is a constant of integration)

1 \(\frac{x^{4}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
2 \(\frac{x^{12}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
3 \(\frac{\mathrm{x}^{4}}{\left(2 \mathrm{x}^{4}+3 \mathrm{x}^{2}+1\right)^{3}}+\mathrm{C}\)
4 \(\frac{x^{12}}{\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
Integral Calculus

86320 The integral
\(\int \frac{\sin ^{2} x \cos ^{2} x}{\left(\sin ^{5} x+\cos ^{3} x \sin ^{2} x+\sin ^{3} x \cos ^{2} x+\cos ^{5} x\right)^{2}} d x\) is equal to

1 \(\frac{1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{C}\)
2 \(\frac{-1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{C}\)
3 \(\frac{1}{1+\cot ^{3} x}+C\)
4 \(\frac{-1}{1+\cot ^{3} x}+C\)
Integral Calculus

86321 If \(\int x^{5} e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+C\), where \(C\) is a constant of integration, then \(f(x)\) is equal to

1 \(-4 x^{3}-1\)
2 \(4 \mathrm{x}^{3}+1\)
3 \(-2 \mathrm{x}^{3}-1\)
4 \(-2 \mathrm{x}^{3}+1\)
Integral Calculus

86327 If \(\int \frac{d \theta}{\cos ^{2} \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{e}|f(\theta)|\) \(+C\) where \(C\) is a constant of integration, then the ordered pair \((\lambda, f(\theta))\) is equal to

1 \((1,1+\tan \theta)\)
2 \((1,1-\tan \theta)\)
3 \((-1,1+\tan \theta)\)
4 \((-1,1-\tan \theta)\)
Integral Calculus

86319 The integral \(\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x\) is equal to (where \(\mathbf{C}\) is a constant of integration)

1 \(\frac{x^{4}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
2 \(\frac{x^{12}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
3 \(\frac{\mathrm{x}^{4}}{\left(2 \mathrm{x}^{4}+3 \mathrm{x}^{2}+1\right)^{3}}+\mathrm{C}\)
4 \(\frac{x^{12}}{\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
Integral Calculus

86320 The integral
\(\int \frac{\sin ^{2} x \cos ^{2} x}{\left(\sin ^{5} x+\cos ^{3} x \sin ^{2} x+\sin ^{3} x \cos ^{2} x+\cos ^{5} x\right)^{2}} d x\) is equal to

1 \(\frac{1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{C}\)
2 \(\frac{-1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{C}\)
3 \(\frac{1}{1+\cot ^{3} x}+C\)
4 \(\frac{-1}{1+\cot ^{3} x}+C\)
Integral Calculus

86321 If \(\int x^{5} e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+C\), where \(C\) is a constant of integration, then \(f(x)\) is equal to

1 \(-4 x^{3}-1\)
2 \(4 \mathrm{x}^{3}+1\)
3 \(-2 \mathrm{x}^{3}-1\)
4 \(-2 \mathrm{x}^{3}+1\)
Integral Calculus

86327 If \(\int \frac{d \theta}{\cos ^{2} \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{e}|f(\theta)|\) \(+C\) where \(C\) is a constant of integration, then the ordered pair \((\lambda, f(\theta))\) is equal to

1 \((1,1+\tan \theta)\)
2 \((1,1-\tan \theta)\)
3 \((-1,1+\tan \theta)\)
4 \((-1,1-\tan \theta)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86319 The integral \(\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x\) is equal to (where \(\mathbf{C}\) is a constant of integration)

1 \(\frac{x^{4}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
2 \(\frac{x^{12}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
3 \(\frac{\mathrm{x}^{4}}{\left(2 \mathrm{x}^{4}+3 \mathrm{x}^{2}+1\right)^{3}}+\mathrm{C}\)
4 \(\frac{x^{12}}{\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C\)
Integral Calculus

86320 The integral
\(\int \frac{\sin ^{2} x \cos ^{2} x}{\left(\sin ^{5} x+\cos ^{3} x \sin ^{2} x+\sin ^{3} x \cos ^{2} x+\cos ^{5} x\right)^{2}} d x\) is equal to

1 \(\frac{1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{C}\)
2 \(\frac{-1}{3\left(1+\tan ^{3} \mathrm{x}\right)}+\mathrm{C}\)
3 \(\frac{1}{1+\cot ^{3} x}+C\)
4 \(\frac{-1}{1+\cot ^{3} x}+C\)
Integral Calculus

86321 If \(\int x^{5} e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+C\), where \(C\) is a constant of integration, then \(f(x)\) is equal to

1 \(-4 x^{3}-1\)
2 \(4 \mathrm{x}^{3}+1\)
3 \(-2 \mathrm{x}^{3}-1\)
4 \(-2 \mathrm{x}^{3}+1\)
Integral Calculus

86327 If \(\int \frac{d \theta}{\cos ^{2} \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{e}|f(\theta)|\) \(+C\) where \(C\) is a constant of integration, then the ordered pair \((\lambda, f(\theta))\) is equal to

1 \((1,1+\tan \theta)\)
2 \((1,1-\tan \theta)\)
3 \((-1,1+\tan \theta)\)
4 \((-1,1-\tan \theta)\)