Integration by Parts
Integral Calculus

86314 For ' \(C\) ' is an arbitrary constant
\(\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\)

1 \(3 x-2+C\)
2 \(\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
3 \(-\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
4 \(\frac{1}{6} \log (\mathrm{x}-1)+\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
Integral Calculus

86315 \(\int(\sec x) \log (\sec x-\tan x) d x=\)

1 \(\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
2 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
3 \(-\frac{3}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
4 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{-2}+C\)
Integral Calculus

86316 The integral \(\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x\) is equal to

1 \(\frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+C\)
2 \(\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
3 \(\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
4 \(\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
Integral Calculus

86317 The integral \(\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}\) is equal to

1 \(\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
2 \(\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
3 \(-\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
4 \(-\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
Integral Calculus

86318 The integral \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) is equal to

1 \((x-1) e^{x+\frac{1}{x}}+C\)
2 \(x \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}+\mathrm{C}\)
3 \((x+1) e^{x+\frac{1}{x}}+C\)
4 \(-x e^{x+\frac{1}{x}}+C\)
Integral Calculus

86314 For ' \(C\) ' is an arbitrary constant
\(\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\)

1 \(3 x-2+C\)
2 \(\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
3 \(-\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
4 \(\frac{1}{6} \log (\mathrm{x}-1)+\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
Integral Calculus

86315 \(\int(\sec x) \log (\sec x-\tan x) d x=\)

1 \(\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
2 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
3 \(-\frac{3}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
4 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{-2}+C\)
Integral Calculus

86316 The integral \(\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x\) is equal to

1 \(\frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+C\)
2 \(\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
3 \(\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
4 \(\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
Integral Calculus

86317 The integral \(\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}\) is equal to

1 \(\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
2 \(\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
3 \(-\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
4 \(-\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
Integral Calculus

86318 The integral \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) is equal to

1 \((x-1) e^{x+\frac{1}{x}}+C\)
2 \(x \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}+\mathrm{C}\)
3 \((x+1) e^{x+\frac{1}{x}}+C\)
4 \(-x e^{x+\frac{1}{x}}+C\)
Integral Calculus

86314 For ' \(C\) ' is an arbitrary constant
\(\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\)

1 \(3 x-2+C\)
2 \(\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
3 \(-\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
4 \(\frac{1}{6} \log (\mathrm{x}-1)+\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
Integral Calculus

86315 \(\int(\sec x) \log (\sec x-\tan x) d x=\)

1 \(\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
2 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
3 \(-\frac{3}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
4 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{-2}+C\)
Integral Calculus

86316 The integral \(\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x\) is equal to

1 \(\frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+C\)
2 \(\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
3 \(\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
4 \(\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
Integral Calculus

86317 The integral \(\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}\) is equal to

1 \(\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
2 \(\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
3 \(-\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
4 \(-\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
Integral Calculus

86318 The integral \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) is equal to

1 \((x-1) e^{x+\frac{1}{x}}+C\)
2 \(x \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}+\mathrm{C}\)
3 \((x+1) e^{x+\frac{1}{x}}+C\)
4 \(-x e^{x+\frac{1}{x}}+C\)
Integral Calculus

86314 For ' \(C\) ' is an arbitrary constant
\(\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\)

1 \(3 x-2+C\)
2 \(\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
3 \(-\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
4 \(\frac{1}{6} \log (\mathrm{x}-1)+\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
Integral Calculus

86315 \(\int(\sec x) \log (\sec x-\tan x) d x=\)

1 \(\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
2 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
3 \(-\frac{3}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
4 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{-2}+C\)
Integral Calculus

86316 The integral \(\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x\) is equal to

1 \(\frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+C\)
2 \(\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
3 \(\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
4 \(\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
Integral Calculus

86317 The integral \(\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}\) is equal to

1 \(\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
2 \(\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
3 \(-\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
4 \(-\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
Integral Calculus

86318 The integral \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) is equal to

1 \((x-1) e^{x+\frac{1}{x}}+C\)
2 \(x \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}+\mathrm{C}\)
3 \((x+1) e^{x+\frac{1}{x}}+C\)
4 \(-x e^{x+\frac{1}{x}}+C\)
Integral Calculus

86314 For ' \(C\) ' is an arbitrary constant
\(\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\)

1 \(3 x-2+C\)
2 \(\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
3 \(-\frac{1}{6} \log (\mathrm{x}-1)-\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
4 \(\frac{1}{6} \log (\mathrm{x}-1)+\frac{1}{3} \log (\mathrm{x}+2)+\frac{1}{2} \log (\mathrm{x}-3)+\mathrm{C}\)
Integral Calculus

86315 \(\int(\sec x) \log (\sec x-\tan x) d x=\)

1 \(\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
2 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
3 \(-\frac{3}{2}\{\log (\sec x-\tan x)\}^{2}+C\)
4 \(-\frac{1}{2}\{\log (\sec x-\tan x)\}^{-2}+C\)
Integral Calculus

86316 The integral \(\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x\) is equal to

1 \(\frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+C\)
2 \(\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
3 \(\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
4 \(\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C\)
Integral Calculus

86317 The integral \(\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}\) is equal to

1 \(\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
2 \(\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
3 \(-\left(\mathrm{x}^{4}+1\right)^{1 / 4}+\mathrm{c}\)
4 \(-\left(\frac{\mathrm{x}^{4}+1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}\)
Integral Calculus

86318 The integral \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) is equal to

1 \((x-1) e^{x+\frac{1}{x}}+C\)
2 \(x \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}+\mathrm{C}\)
3 \((x+1) e^{x+\frac{1}{x}}+C\)
4 \(-x e^{x+\frac{1}{x}}+C\)