(B) : Given, \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+\int x\left(1-\frac{1}{x^{2}}\right) e^{\left(x+\frac{1}{x}\right)} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+x e^{x+\frac{1}{x}}-\int e^{x+\frac{1}{x}} d x\) Using integration by parts \(\left[\because \int\left(1-\frac{1}{\mathrm{x}^{2}}\right) \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}=\mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}\right.\) \(=x e^{x+\frac{1}{x}}+c\)
(B) : Given, \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+\int x\left(1-\frac{1}{x^{2}}\right) e^{\left(x+\frac{1}{x}\right)} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+x e^{x+\frac{1}{x}}-\int e^{x+\frac{1}{x}} d x\) Using integration by parts \(\left[\because \int\left(1-\frac{1}{\mathrm{x}^{2}}\right) \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}=\mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}\right.\) \(=x e^{x+\frac{1}{x}}+c\)
(B) : Given, \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+\int x\left(1-\frac{1}{x^{2}}\right) e^{\left(x+\frac{1}{x}\right)} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+x e^{x+\frac{1}{x}}-\int e^{x+\frac{1}{x}} d x\) Using integration by parts \(\left[\because \int\left(1-\frac{1}{\mathrm{x}^{2}}\right) \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}=\mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}\right.\) \(=x e^{x+\frac{1}{x}}+c\)
(B) : Given, \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+\int x\left(1-\frac{1}{x^{2}}\right) e^{\left(x+\frac{1}{x}\right)} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+x e^{x+\frac{1}{x}}-\int e^{x+\frac{1}{x}} d x\) Using integration by parts \(\left[\because \int\left(1-\frac{1}{\mathrm{x}^{2}}\right) \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}=\mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}\right.\) \(=x e^{x+\frac{1}{x}}+c\)
(B) : Given, \(\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+\int x\left(1-\frac{1}{x^{2}}\right) e^{\left(x+\frac{1}{x}\right)} d x\) \(=\int e^{\left(x+\frac{1}{x}\right)} d x+x e^{x+\frac{1}{x}}-\int e^{x+\frac{1}{x}} d x\) Using integration by parts \(\left[\because \int\left(1-\frac{1}{\mathrm{x}^{2}}\right) \mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}=\mathrm{e}^{\mathrm{x}+\frac{1}{\mathrm{x}}}\right.\) \(=x e^{x+\frac{1}{x}}+c\)