Integral Calculus
86310
\(\int x^{2020}\left(\tan ^{-1} x+\cot ^{-1} x\right) d x=\)
1 \(\frac{x^{2021}}{2020}\left(\tan ^{-1} x+\cot ^{-1} x\right)+c\)
2 \(\frac{x^{2021}}{2021}\left(\tan ^{-1} x+\cot ^{-1} x\right)+c\)
3 \(\frac{\pi \mathrm{x}^{2021}}{2021}+\frac{\pi}{2}+\mathrm{c}\)
4 \(\frac{\mathrm{x}^{52}}{52}+\frac{\pi}{2}+\mathrm{c}\)
Explanation:
(B) : Given,
\(I=\int x^{2020}\left(\tan ^{-1} x+\cot ^{-1} x\right) d x\)
We know that,
\(\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\)
\(\therefore \quad \int \mathrm{x}^{2020} \times \frac{\pi}{2} \mathrm{dx}\)
\(=\frac{\pi}{2} \int \mathrm{x}^{2020} \mathrm{dx}=\frac{\pi}{2} \times \frac{\mathrm{x}^{2021}}{2021}+\mathrm{C}\)
\(=\frac{\mathrm{x}^{2021}}{2021}\left(\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}\right)+\mathrm{C}\)