Integration by Parts
Integral Calculus

86239 \(\int \mathrm{e}^{\cos ^{-1} x}\left[\frac{x-\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}\right] d x=\)

1 \(-\mathrm{xe}^{\cos ^{-1} \mathrm{x}}+\mathrm{c}\)
2 \(-\mathrm{e}^{\sin ^{-1} x}+\mathrm{c}\)
3 \(-x e^{\sin ^{-1} x}+c\)
4 \(-\mathrm{e}^{\cos ^{-1} x}+\mathrm{c}\)
Integral Calculus

86240 \(\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\)

1 \(\frac{\pi}{80}\)
2 \(\frac{\pi}{60}\)
3 \(\frac{-\pi}{60}\)
4 \(\frac{\pi}{120}\)
Integral Calculus

86241 \(\int \frac{d x}{(\sin x+\cos x)(2 \cos x+\sin x)}=\)

1 \(\log \left|\frac{\sin x+\cos x}{2 \cos x-\sin x}\right|+c\)
2 \(\log |\sin x+\cos x|+c\)
3 \(\log \left|\frac{\tan x+2}{\tan x+1}\right|+c\)
4 \(\log \left|\frac{\tan \mathrm{x}+1}{\tan \mathrm{x}+2}\right|+\mathrm{c}\)
Integral Calculus

86242 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{13}{42}\)
2 \(\frac{1}{42}\)
3 \(\frac{1}{13}\)
4 \(\frac{1}{5}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86239 \(\int \mathrm{e}^{\cos ^{-1} x}\left[\frac{x-\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}\right] d x=\)

1 \(-\mathrm{xe}^{\cos ^{-1} \mathrm{x}}+\mathrm{c}\)
2 \(-\mathrm{e}^{\sin ^{-1} x}+\mathrm{c}\)
3 \(-x e^{\sin ^{-1} x}+c\)
4 \(-\mathrm{e}^{\cos ^{-1} x}+\mathrm{c}\)
Integral Calculus

86240 \(\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\)

1 \(\frac{\pi}{80}\)
2 \(\frac{\pi}{60}\)
3 \(\frac{-\pi}{60}\)
4 \(\frac{\pi}{120}\)
Integral Calculus

86241 \(\int \frac{d x}{(\sin x+\cos x)(2 \cos x+\sin x)}=\)

1 \(\log \left|\frac{\sin x+\cos x}{2 \cos x-\sin x}\right|+c\)
2 \(\log |\sin x+\cos x|+c\)
3 \(\log \left|\frac{\tan x+2}{\tan x+1}\right|+c\)
4 \(\log \left|\frac{\tan \mathrm{x}+1}{\tan \mathrm{x}+2}\right|+\mathrm{c}\)
Integral Calculus

86242 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{13}{42}\)
2 \(\frac{1}{42}\)
3 \(\frac{1}{13}\)
4 \(\frac{1}{5}\)
Integral Calculus

86239 \(\int \mathrm{e}^{\cos ^{-1} x}\left[\frac{x-\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}\right] d x=\)

1 \(-\mathrm{xe}^{\cos ^{-1} \mathrm{x}}+\mathrm{c}\)
2 \(-\mathrm{e}^{\sin ^{-1} x}+\mathrm{c}\)
3 \(-x e^{\sin ^{-1} x}+c\)
4 \(-\mathrm{e}^{\cos ^{-1} x}+\mathrm{c}\)
Integral Calculus

86240 \(\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\)

1 \(\frac{\pi}{80}\)
2 \(\frac{\pi}{60}\)
3 \(\frac{-\pi}{60}\)
4 \(\frac{\pi}{120}\)
Integral Calculus

86241 \(\int \frac{d x}{(\sin x+\cos x)(2 \cos x+\sin x)}=\)

1 \(\log \left|\frac{\sin x+\cos x}{2 \cos x-\sin x}\right|+c\)
2 \(\log |\sin x+\cos x|+c\)
3 \(\log \left|\frac{\tan x+2}{\tan x+1}\right|+c\)
4 \(\log \left|\frac{\tan \mathrm{x}+1}{\tan \mathrm{x}+2}\right|+\mathrm{c}\)
Integral Calculus

86242 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{13}{42}\)
2 \(\frac{1}{42}\)
3 \(\frac{1}{13}\)
4 \(\frac{1}{5}\)
Integral Calculus

86239 \(\int \mathrm{e}^{\cos ^{-1} x}\left[\frac{x-\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}\right] d x=\)

1 \(-\mathrm{xe}^{\cos ^{-1} \mathrm{x}}+\mathrm{c}\)
2 \(-\mathrm{e}^{\sin ^{-1} x}+\mathrm{c}\)
3 \(-x e^{\sin ^{-1} x}+c\)
4 \(-\mathrm{e}^{\cos ^{-1} x}+\mathrm{c}\)
Integral Calculus

86240 \(\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\)

1 \(\frac{\pi}{80}\)
2 \(\frac{\pi}{60}\)
3 \(\frac{-\pi}{60}\)
4 \(\frac{\pi}{120}\)
Integral Calculus

86241 \(\int \frac{d x}{(\sin x+\cos x)(2 \cos x+\sin x)}=\)

1 \(\log \left|\frac{\sin x+\cos x}{2 \cos x-\sin x}\right|+c\)
2 \(\log |\sin x+\cos x|+c\)
3 \(\log \left|\frac{\tan x+2}{\tan x+1}\right|+c\)
4 \(\log \left|\frac{\tan \mathrm{x}+1}{\tan \mathrm{x}+2}\right|+\mathrm{c}\)
Integral Calculus

86242 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{13}{42}\)
2 \(\frac{1}{42}\)
3 \(\frac{1}{13}\)
4 \(\frac{1}{5}\)