Integration by Parts
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86243 x2+1x4x2+1dx=

1 tan1(x21x)+c
2 tan1(x2+12)+c
3 tan1(2x21)+c
4 tan1(x2)+c
Integral Calculus

86244 abxx+a+bxdx=

1 ab
2 ba2
3 ab2
4 a+b
Integral Calculus

86245 If dx169x2=Asin1(Bx)+C then A+B=

1 94
2 194
3 34
4 1312
Integral Calculus

86246 ex[2+sin2x1+cos2x]dx=

1 extanx+c
2 ex+tanx+c
3 2extanx+c
4 extan2x+c
Integral Calculus

86243 x2+1x4x2+1dx=

1 tan1(x21x)+c
2 tan1(x2+12)+c
3 tan1(2x21)+c
4 tan1(x2)+c
Integral Calculus

86244 abxx+a+bxdx=

1 ab
2 ba2
3 ab2
4 a+b
Integral Calculus

86245 If dx169x2=Asin1(Bx)+C then A+B=

1 94
2 194
3 34
4 1312
Integral Calculus

86246 ex[2+sin2x1+cos2x]dx=

1 extanx+c
2 ex+tanx+c
3 2extanx+c
4 extan2x+c
Integral Calculus

86243 x2+1x4x2+1dx=

1 tan1(x21x)+c
2 tan1(x2+12)+c
3 tan1(2x21)+c
4 tan1(x2)+c
Integral Calculus

86244 abxx+a+bxdx=

1 ab
2 ba2
3 ab2
4 a+b
Integral Calculus

86245 If dx169x2=Asin1(Bx)+C then A+B=

1 94
2 194
3 34
4 1312
Integral Calculus

86246 ex[2+sin2x1+cos2x]dx=

1 extanx+c
2 ex+tanx+c
3 2extanx+c
4 extan2x+c
Integral Calculus

86243 x2+1x4x2+1dx=

1 tan1(x21x)+c
2 tan1(x2+12)+c
3 tan1(2x21)+c
4 tan1(x2)+c
Integral Calculus

86244 abxx+a+bxdx=

1 ab
2 ba2
3 ab2
4 a+b
Integral Calculus

86245 If dx169x2=Asin1(Bx)+C then A+B=

1 94
2 194
3 34
4 1312
Integral Calculus

86246 ex[2+sin2x1+cos2x]dx=

1 extanx+c
2 ex+tanx+c
3 2extanx+c
4 extan2x+c