Integration by Parts
Integral Calculus

86247 If
\(\int \frac{1}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x=\operatorname{Atan}^{-1} \frac{x}{2}+B^{-1} \tan ^{-1}\left(\frac{x}{3}\right)+C,\)
then \(\mathbf{A}-\mathbf{B}=\)

1 \(\frac{1}{6}\)
2 \(\frac{1}{30}\)
3 \(-\frac{1}{30}\)
4 \(-\frac{1}{6}\)
Integral Calculus

86248 If \(\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=\operatorname{acos} 8 x+C\), then \(a=\)

1 \(-\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{16}\)
4 \(-\frac{1}{8}\)
Integral Calculus

86249 \(\int \frac{x^{3}-1}{x^{3}+x} d x=\)

1 \(x-\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
2 \(x-\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
3 \(x+\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
4 \(x+\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
Integral Calculus

86250 \(\int_{-1}^{1}\left(x^{27} \cos x+e^{x}\right) d x\)

1 \(\frac{2 \mathrm{e}-1}{\mathrm{e}}\)
2 \(\frac{e+1}{e}\)
3 \(\mathrm{e}-\frac{1}{\mathrm{e}}\)
4 \(\frac{1}{\mathrm{e}}\)
Integral Calculus

86251 Evaluate \(\int_{1}^{3} \frac{\cos (\log x)}{x} d x\)

1 \(3 \sin (\log x)\)
2 \(\sin 3 x\)
3 \(\sin (\log 3)\)
4 \(\log 3\)
Integral Calculus

86247 If
\(\int \frac{1}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x=\operatorname{Atan}^{-1} \frac{x}{2}+B^{-1} \tan ^{-1}\left(\frac{x}{3}\right)+C,\)
then \(\mathbf{A}-\mathbf{B}=\)

1 \(\frac{1}{6}\)
2 \(\frac{1}{30}\)
3 \(-\frac{1}{30}\)
4 \(-\frac{1}{6}\)
Integral Calculus

86248 If \(\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=\operatorname{acos} 8 x+C\), then \(a=\)

1 \(-\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{16}\)
4 \(-\frac{1}{8}\)
Integral Calculus

86249 \(\int \frac{x^{3}-1}{x^{3}+x} d x=\)

1 \(x-\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
2 \(x-\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
3 \(x+\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
4 \(x+\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
Integral Calculus

86250 \(\int_{-1}^{1}\left(x^{27} \cos x+e^{x}\right) d x\)

1 \(\frac{2 \mathrm{e}-1}{\mathrm{e}}\)
2 \(\frac{e+1}{e}\)
3 \(\mathrm{e}-\frac{1}{\mathrm{e}}\)
4 \(\frac{1}{\mathrm{e}}\)
Integral Calculus

86251 Evaluate \(\int_{1}^{3} \frac{\cos (\log x)}{x} d x\)

1 \(3 \sin (\log x)\)
2 \(\sin 3 x\)
3 \(\sin (\log 3)\)
4 \(\log 3\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86247 If
\(\int \frac{1}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x=\operatorname{Atan}^{-1} \frac{x}{2}+B^{-1} \tan ^{-1}\left(\frac{x}{3}\right)+C,\)
then \(\mathbf{A}-\mathbf{B}=\)

1 \(\frac{1}{6}\)
2 \(\frac{1}{30}\)
3 \(-\frac{1}{30}\)
4 \(-\frac{1}{6}\)
Integral Calculus

86248 If \(\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=\operatorname{acos} 8 x+C\), then \(a=\)

1 \(-\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{16}\)
4 \(-\frac{1}{8}\)
Integral Calculus

86249 \(\int \frac{x^{3}-1}{x^{3}+x} d x=\)

1 \(x-\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
2 \(x-\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
3 \(x+\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
4 \(x+\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
Integral Calculus

86250 \(\int_{-1}^{1}\left(x^{27} \cos x+e^{x}\right) d x\)

1 \(\frac{2 \mathrm{e}-1}{\mathrm{e}}\)
2 \(\frac{e+1}{e}\)
3 \(\mathrm{e}-\frac{1}{\mathrm{e}}\)
4 \(\frac{1}{\mathrm{e}}\)
Integral Calculus

86251 Evaluate \(\int_{1}^{3} \frac{\cos (\log x)}{x} d x\)

1 \(3 \sin (\log x)\)
2 \(\sin 3 x\)
3 \(\sin (\log 3)\)
4 \(\log 3\)
Integral Calculus

86247 If
\(\int \frac{1}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x=\operatorname{Atan}^{-1} \frac{x}{2}+B^{-1} \tan ^{-1}\left(\frac{x}{3}\right)+C,\)
then \(\mathbf{A}-\mathbf{B}=\)

1 \(\frac{1}{6}\)
2 \(\frac{1}{30}\)
3 \(-\frac{1}{30}\)
4 \(-\frac{1}{6}\)
Integral Calculus

86248 If \(\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=\operatorname{acos} 8 x+C\), then \(a=\)

1 \(-\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{16}\)
4 \(-\frac{1}{8}\)
Integral Calculus

86249 \(\int \frac{x^{3}-1}{x^{3}+x} d x=\)

1 \(x-\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
2 \(x-\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
3 \(x+\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
4 \(x+\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
Integral Calculus

86250 \(\int_{-1}^{1}\left(x^{27} \cos x+e^{x}\right) d x\)

1 \(\frac{2 \mathrm{e}-1}{\mathrm{e}}\)
2 \(\frac{e+1}{e}\)
3 \(\mathrm{e}-\frac{1}{\mathrm{e}}\)
4 \(\frac{1}{\mathrm{e}}\)
Integral Calculus

86251 Evaluate \(\int_{1}^{3} \frac{\cos (\log x)}{x} d x\)

1 \(3 \sin (\log x)\)
2 \(\sin 3 x\)
3 \(\sin (\log 3)\)
4 \(\log 3\)
Integral Calculus

86247 If
\(\int \frac{1}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x=\operatorname{Atan}^{-1} \frac{x}{2}+B^{-1} \tan ^{-1}\left(\frac{x}{3}\right)+C,\)
then \(\mathbf{A}-\mathbf{B}=\)

1 \(\frac{1}{6}\)
2 \(\frac{1}{30}\)
3 \(-\frac{1}{30}\)
4 \(-\frac{1}{6}\)
Integral Calculus

86248 If \(\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=\operatorname{acos} 8 x+C\), then \(a=\)

1 \(-\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{16}\)
4 \(-\frac{1}{8}\)
Integral Calculus

86249 \(\int \frac{x^{3}-1}{x^{3}+x} d x=\)

1 \(x-\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
2 \(x-\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
3 \(x+\log x+\log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
4 \(x+\log x+\frac{1}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+C\)
Integral Calculus

86250 \(\int_{-1}^{1}\left(x^{27} \cos x+e^{x}\right) d x\)

1 \(\frac{2 \mathrm{e}-1}{\mathrm{e}}\)
2 \(\frac{e+1}{e}\)
3 \(\mathrm{e}-\frac{1}{\mathrm{e}}\)
4 \(\frac{1}{\mathrm{e}}\)
Integral Calculus

86251 Evaluate \(\int_{1}^{3} \frac{\cos (\log x)}{x} d x\)

1 \(3 \sin (\log x)\)
2 \(\sin 3 x\)
3 \(\sin (\log 3)\)
4 \(\log 3\)