Integration by Parts
Integral Calculus

86294 \(\int \frac{\mathrm{x}^{4}+1}{1+\mathrm{x}^{6}} \mathrm{dx}=\)

1 \(\tan ^{-1}\left(x^{3}\right)+\tan ^{-1} x+c\)
2 \(\frac{1}{3} \tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{x}^{3}+\mathrm{c}\)
3 \(3 \tan ^{-1} \mathrm{x}^{3}+\tan ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^{3}+c\)
Integral Calculus

86312 \(\int \frac{x^{4}+x^{2}+1}{x^{2}-x+1} d x=\)

1 \(\left(\frac{1}{3}\right) x^{3}+\left(\frac{1}{2}\right) x^{2}+x+c\)
2 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}+\mathrm{x}+\mathrm{c}\)
3 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}+\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
4 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
Integral Calculus

86313 \(\int \mathrm{e}^{3 \log \mathrm{x}}\left(\mathrm{x}^{4}+1\right)^{-1} \mathrm{dx}=\)

1 \(\mathrm{e}^{3 \log } \mathrm{x}+\mathrm{c}\)
2 \(\frac{1}{4} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
3 \(\frac{1}{3} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
4 \(\frac{x^{4}}{x^{4}+1}\)
Integral Calculus

86322 If \(\int x^{5} e^{-x^{2}} d x=g(x) e^{-x^{2}}+C\), where \(C\) is a constant of integration then \(\mathrm{g}(-1)\) is equal to

1 -1
2 1
3 \(-\frac{1}{2}\)
4 \(-\frac{5}{2}\)
Integral Calculus

86323 If \(\int \frac{d x}{x^{3}\left(1+x^{6}\right)^{2 / 3}}=x f(x)\left(1+x^{6}\right)^{\frac{1}{3}}+C\) where, \(C\) is a constant of integration, then the function \(f(x)\) is equal to

1 \(-\frac{1}{6 x^{3}}\)
2 \(-\frac{1}{2 x^{3}}\)
3 \(-\frac{1}{2 x^{2}}\)
4 \(\frac{3}{x^{2}}\)
Integral Calculus

86294 \(\int \frac{\mathrm{x}^{4}+1}{1+\mathrm{x}^{6}} \mathrm{dx}=\)

1 \(\tan ^{-1}\left(x^{3}\right)+\tan ^{-1} x+c\)
2 \(\frac{1}{3} \tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{x}^{3}+\mathrm{c}\)
3 \(3 \tan ^{-1} \mathrm{x}^{3}+\tan ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^{3}+c\)
Integral Calculus

86312 \(\int \frac{x^{4}+x^{2}+1}{x^{2}-x+1} d x=\)

1 \(\left(\frac{1}{3}\right) x^{3}+\left(\frac{1}{2}\right) x^{2}+x+c\)
2 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}+\mathrm{x}+\mathrm{c}\)
3 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}+\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
4 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
Integral Calculus

86313 \(\int \mathrm{e}^{3 \log \mathrm{x}}\left(\mathrm{x}^{4}+1\right)^{-1} \mathrm{dx}=\)

1 \(\mathrm{e}^{3 \log } \mathrm{x}+\mathrm{c}\)
2 \(\frac{1}{4} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
3 \(\frac{1}{3} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
4 \(\frac{x^{4}}{x^{4}+1}\)
Integral Calculus

86322 If \(\int x^{5} e^{-x^{2}} d x=g(x) e^{-x^{2}}+C\), where \(C\) is a constant of integration then \(\mathrm{g}(-1)\) is equal to

1 -1
2 1
3 \(-\frac{1}{2}\)
4 \(-\frac{5}{2}\)
Integral Calculus

86323 If \(\int \frac{d x}{x^{3}\left(1+x^{6}\right)^{2 / 3}}=x f(x)\left(1+x^{6}\right)^{\frac{1}{3}}+C\) where, \(C\) is a constant of integration, then the function \(f(x)\) is equal to

1 \(-\frac{1}{6 x^{3}}\)
2 \(-\frac{1}{2 x^{3}}\)
3 \(-\frac{1}{2 x^{2}}\)
4 \(\frac{3}{x^{2}}\)
Integral Calculus

86294 \(\int \frac{\mathrm{x}^{4}+1}{1+\mathrm{x}^{6}} \mathrm{dx}=\)

1 \(\tan ^{-1}\left(x^{3}\right)+\tan ^{-1} x+c\)
2 \(\frac{1}{3} \tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{x}^{3}+\mathrm{c}\)
3 \(3 \tan ^{-1} \mathrm{x}^{3}+\tan ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^{3}+c\)
Integral Calculus

86312 \(\int \frac{x^{4}+x^{2}+1}{x^{2}-x+1} d x=\)

1 \(\left(\frac{1}{3}\right) x^{3}+\left(\frac{1}{2}\right) x^{2}+x+c\)
2 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}+\mathrm{x}+\mathrm{c}\)
3 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}+\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
4 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
Integral Calculus

86313 \(\int \mathrm{e}^{3 \log \mathrm{x}}\left(\mathrm{x}^{4}+1\right)^{-1} \mathrm{dx}=\)

1 \(\mathrm{e}^{3 \log } \mathrm{x}+\mathrm{c}\)
2 \(\frac{1}{4} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
3 \(\frac{1}{3} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
4 \(\frac{x^{4}}{x^{4}+1}\)
Integral Calculus

86322 If \(\int x^{5} e^{-x^{2}} d x=g(x) e^{-x^{2}}+C\), where \(C\) is a constant of integration then \(\mathrm{g}(-1)\) is equal to

1 -1
2 1
3 \(-\frac{1}{2}\)
4 \(-\frac{5}{2}\)
Integral Calculus

86323 If \(\int \frac{d x}{x^{3}\left(1+x^{6}\right)^{2 / 3}}=x f(x)\left(1+x^{6}\right)^{\frac{1}{3}}+C\) where, \(C\) is a constant of integration, then the function \(f(x)\) is equal to

1 \(-\frac{1}{6 x^{3}}\)
2 \(-\frac{1}{2 x^{3}}\)
3 \(-\frac{1}{2 x^{2}}\)
4 \(\frac{3}{x^{2}}\)
Integral Calculus

86294 \(\int \frac{\mathrm{x}^{4}+1}{1+\mathrm{x}^{6}} \mathrm{dx}=\)

1 \(\tan ^{-1}\left(x^{3}\right)+\tan ^{-1} x+c\)
2 \(\frac{1}{3} \tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{x}^{3}+\mathrm{c}\)
3 \(3 \tan ^{-1} \mathrm{x}^{3}+\tan ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^{3}+c\)
Integral Calculus

86312 \(\int \frac{x^{4}+x^{2}+1}{x^{2}-x+1} d x=\)

1 \(\left(\frac{1}{3}\right) x^{3}+\left(\frac{1}{2}\right) x^{2}+x+c\)
2 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}+\mathrm{x}+\mathrm{c}\)
3 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}+\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
4 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
Integral Calculus

86313 \(\int \mathrm{e}^{3 \log \mathrm{x}}\left(\mathrm{x}^{4}+1\right)^{-1} \mathrm{dx}=\)

1 \(\mathrm{e}^{3 \log } \mathrm{x}+\mathrm{c}\)
2 \(\frac{1}{4} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
3 \(\frac{1}{3} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
4 \(\frac{x^{4}}{x^{4}+1}\)
Integral Calculus

86322 If \(\int x^{5} e^{-x^{2}} d x=g(x) e^{-x^{2}}+C\), where \(C\) is a constant of integration then \(\mathrm{g}(-1)\) is equal to

1 -1
2 1
3 \(-\frac{1}{2}\)
4 \(-\frac{5}{2}\)
Integral Calculus

86323 If \(\int \frac{d x}{x^{3}\left(1+x^{6}\right)^{2 / 3}}=x f(x)\left(1+x^{6}\right)^{\frac{1}{3}}+C\) where, \(C\) is a constant of integration, then the function \(f(x)\) is equal to

1 \(-\frac{1}{6 x^{3}}\)
2 \(-\frac{1}{2 x^{3}}\)
3 \(-\frac{1}{2 x^{2}}\)
4 \(\frac{3}{x^{2}}\)
Integral Calculus

86294 \(\int \frac{\mathrm{x}^{4}+1}{1+\mathrm{x}^{6}} \mathrm{dx}=\)

1 \(\tan ^{-1}\left(x^{3}\right)+\tan ^{-1} x+c\)
2 \(\frac{1}{3} \tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{x}^{3}+\mathrm{c}\)
3 \(3 \tan ^{-1} \mathrm{x}^{3}+\tan ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^{3}+c\)
Integral Calculus

86312 \(\int \frac{x^{4}+x^{2}+1}{x^{2}-x+1} d x=\)

1 \(\left(\frac{1}{3}\right) x^{3}+\left(\frac{1}{2}\right) x^{2}+x+c\)
2 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}+\mathrm{x}+\mathrm{c}\)
3 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}+\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
4 \(\left(\frac{1}{3}\right) \mathrm{x}^{3}-\left(\frac{1}{2}\right) \mathrm{x}^{2}-\mathrm{x}+\mathrm{c}\)
Integral Calculus

86313 \(\int \mathrm{e}^{3 \log \mathrm{x}}\left(\mathrm{x}^{4}+1\right)^{-1} \mathrm{dx}=\)

1 \(\mathrm{e}^{3 \log } \mathrm{x}+\mathrm{c}\)
2 \(\frac{1}{4} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
3 \(\frac{1}{3} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{c}\)
4 \(\frac{x^{4}}{x^{4}+1}\)
Integral Calculus

86322 If \(\int x^{5} e^{-x^{2}} d x=g(x) e^{-x^{2}}+C\), where \(C\) is a constant of integration then \(\mathrm{g}(-1)\) is equal to

1 -1
2 1
3 \(-\frac{1}{2}\)
4 \(-\frac{5}{2}\)
Integral Calculus

86323 If \(\int \frac{d x}{x^{3}\left(1+x^{6}\right)^{2 / 3}}=x f(x)\left(1+x^{6}\right)^{\frac{1}{3}}+C\) where, \(C\) is a constant of integration, then the function \(f(x)\) is equal to

1 \(-\frac{1}{6 x^{3}}\)
2 \(-\frac{1}{2 x^{3}}\)
3 \(-\frac{1}{2 x^{2}}\)
4 \(\frac{3}{x^{2}}\)