Integration by Parts
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86267 \(\int \frac{\cos x-1}{\sin x+1} e^{x} d x\) is equal to:

1 \(\frac{e^{x} \cos \mathrm{x}}{1+\sin \mathrm{x}}+\mathrm{c}\)
2 \(c-\frac{e^{x} \sin x}{1+\sin x}\)
3 \(c-\frac{e^{x}}{1+\sin \mathrm{x}}\)
4 \(c-\frac{e^{x} \cos x}{1+\sin x}\)
Integral Calculus

86268 \(\int \frac{1}{x^{6}+x^{4}} d x\) is equal to

1 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\operatorname{cosec}^{-1} \mathrm{x}+C\)
2 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\cot ^{-1} x+C\)
3 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\tan ^{-1} x+C\)
4 None of the above
Integral Calculus

86285 If \(\int x^{3} e^{2 x} d x=\frac{e^{2 x}}{8} f(x)+c\), than the sum of all the complex roots of \(f(x)=1\) is

1 \(\frac{1}{2}\)
2 3
3 1
4 2
Integral Calculus

86293 If \(\int(1-\cos x) \operatorname{cosec}^{2} x d x=f(x)+c\), then \(f(x)\) is equal to

1 \(\tan \frac{x}{2}\)
2 \(\cot \frac{x}{2}\)
3 \(2 \tan \frac{x}{2}\)
4 \(\frac{1}{2} \tan \frac{x}{2}\)
Integral Calculus

86267 \(\int \frac{\cos x-1}{\sin x+1} e^{x} d x\) is equal to:

1 \(\frac{e^{x} \cos \mathrm{x}}{1+\sin \mathrm{x}}+\mathrm{c}\)
2 \(c-\frac{e^{x} \sin x}{1+\sin x}\)
3 \(c-\frac{e^{x}}{1+\sin \mathrm{x}}\)
4 \(c-\frac{e^{x} \cos x}{1+\sin x}\)
Integral Calculus

86268 \(\int \frac{1}{x^{6}+x^{4}} d x\) is equal to

1 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\operatorname{cosec}^{-1} \mathrm{x}+C\)
2 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\cot ^{-1} x+C\)
3 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\tan ^{-1} x+C\)
4 None of the above
Integral Calculus

86285 If \(\int x^{3} e^{2 x} d x=\frac{e^{2 x}}{8} f(x)+c\), than the sum of all the complex roots of \(f(x)=1\) is

1 \(\frac{1}{2}\)
2 3
3 1
4 2
Integral Calculus

86293 If \(\int(1-\cos x) \operatorname{cosec}^{2} x d x=f(x)+c\), then \(f(x)\) is equal to

1 \(\tan \frac{x}{2}\)
2 \(\cot \frac{x}{2}\)
3 \(2 \tan \frac{x}{2}\)
4 \(\frac{1}{2} \tan \frac{x}{2}\)
Integral Calculus

86267 \(\int \frac{\cos x-1}{\sin x+1} e^{x} d x\) is equal to:

1 \(\frac{e^{x} \cos \mathrm{x}}{1+\sin \mathrm{x}}+\mathrm{c}\)
2 \(c-\frac{e^{x} \sin x}{1+\sin x}\)
3 \(c-\frac{e^{x}}{1+\sin \mathrm{x}}\)
4 \(c-\frac{e^{x} \cos x}{1+\sin x}\)
Integral Calculus

86268 \(\int \frac{1}{x^{6}+x^{4}} d x\) is equal to

1 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\operatorname{cosec}^{-1} \mathrm{x}+C\)
2 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\cot ^{-1} x+C\)
3 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\tan ^{-1} x+C\)
4 None of the above
Integral Calculus

86285 If \(\int x^{3} e^{2 x} d x=\frac{e^{2 x}}{8} f(x)+c\), than the sum of all the complex roots of \(f(x)=1\) is

1 \(\frac{1}{2}\)
2 3
3 1
4 2
Integral Calculus

86293 If \(\int(1-\cos x) \operatorname{cosec}^{2} x d x=f(x)+c\), then \(f(x)\) is equal to

1 \(\tan \frac{x}{2}\)
2 \(\cot \frac{x}{2}\)
3 \(2 \tan \frac{x}{2}\)
4 \(\frac{1}{2} \tan \frac{x}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86267 \(\int \frac{\cos x-1}{\sin x+1} e^{x} d x\) is equal to:

1 \(\frac{e^{x} \cos \mathrm{x}}{1+\sin \mathrm{x}}+\mathrm{c}\)
2 \(c-\frac{e^{x} \sin x}{1+\sin x}\)
3 \(c-\frac{e^{x}}{1+\sin \mathrm{x}}\)
4 \(c-\frac{e^{x} \cos x}{1+\sin x}\)
Integral Calculus

86268 \(\int \frac{1}{x^{6}+x^{4}} d x\) is equal to

1 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\operatorname{cosec}^{-1} \mathrm{x}+C\)
2 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\cot ^{-1} x+C\)
3 \(-\frac{1}{3 x^{3}}+\frac{1}{x}+\tan ^{-1} x+C\)
4 None of the above
Integral Calculus

86285 If \(\int x^{3} e^{2 x} d x=\frac{e^{2 x}}{8} f(x)+c\), than the sum of all the complex roots of \(f(x)=1\) is

1 \(\frac{1}{2}\)
2 3
3 1
4 2
Integral Calculus

86293 If \(\int(1-\cos x) \operatorname{cosec}^{2} x d x=f(x)+c\), then \(f(x)\) is equal to

1 \(\tan \frac{x}{2}\)
2 \(\cot \frac{x}{2}\)
3 \(2 \tan \frac{x}{2}\)
4 \(\frac{1}{2} \tan \frac{x}{2}\)