Integration by Parts
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86324 The integral \(\int \sec ^{2 / 3} x \operatorname{cosec}^{4 / 3} x d x\) is equal to (here \(\mathbf{C}\) is a constant of integration)

1 \(3 \tan ^{-1 / 3} \mathrm{x}+\mathrm{C}\)
2 \(-3 \tan ^{-1 / 3} \mathrm{x}+\mathrm{C}\)
3 \(-3 \cot ^{-1 / 3} x+C\)
4 \(-\frac{3}{4} \tan ^{-4 / 3} x+C\)
Integral Calculus

86325 If \(\int \mathrm{e}^{\sec x}\left(\sec x \tan x f(x)+\left(\sec x \tan x+\sec ^{2} x\right)\right)\) \(d x=e^{\sec x} f(x)+C\), then a possible choice of \(f(x)\) is

1 \(x \sec x+\tan x+\frac{1}{2}\)
2 \(\sec x+\tan x+\frac{1}{2}\)
3 \(\sec x+x \tan x-\frac{1}{2}\)
4 \(\sec x-\tan x-\frac{1}{2}\)
Integral Calculus

86326 If \(\int \frac{d x}{\left(x^{2}-2 x+10\right)^{2}}\)
\(=\mathbf{A}\left(\tan ^{-1}\left(\frac{\mathbf{x}-1}{3}\right)+\frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}^{2}-\mathbf{2 x}+\mathbf{1 0}}\right)+\mathbf{C}\)
where, \(C\) is a constant of integration, then

1 \(\mathrm{A}=\frac{1}{27}\) and \(\mathrm{f}(\mathrm{x})=9(\mathrm{x}-1)\)
2 \(A=\frac{1}{81}\) and \(\mathrm{f}(\mathrm{x})=3(\mathrm{x}-1)\)
3 \(\mathrm{A}=\frac{1}{54}\) and \(\mathrm{f}(\mathrm{x})=3(\mathrm{x}-1)\)
4 \(A=\frac{1}{54}\) and \(f(x)=9(x-1)^{2}\)
Integral Calculus

86334 \(\int \sin (11 x) \cdot \sin ^{9} x d x=\) \(+\mathbf{C}\).

1 \(\frac{\sin (10 x) \cdot \sin ^{10} x}{10}\)
2 \(\frac{\sin ^{11} x}{11}\)
3 \(\frac{\sin (9 \mathrm{x}) \cdot \sin ^{9} \mathrm{x}}{9}\)
4 \(\frac{\cos (10 x) \cdot \cos ^{10} x}{10}\)
Integral Calculus

86324 The integral \(\int \sec ^{2 / 3} x \operatorname{cosec}^{4 / 3} x d x\) is equal to (here \(\mathbf{C}\) is a constant of integration)

1 \(3 \tan ^{-1 / 3} \mathrm{x}+\mathrm{C}\)
2 \(-3 \tan ^{-1 / 3} \mathrm{x}+\mathrm{C}\)
3 \(-3 \cot ^{-1 / 3} x+C\)
4 \(-\frac{3}{4} \tan ^{-4 / 3} x+C\)
Integral Calculus

86325 If \(\int \mathrm{e}^{\sec x}\left(\sec x \tan x f(x)+\left(\sec x \tan x+\sec ^{2} x\right)\right)\) \(d x=e^{\sec x} f(x)+C\), then a possible choice of \(f(x)\) is

1 \(x \sec x+\tan x+\frac{1}{2}\)
2 \(\sec x+\tan x+\frac{1}{2}\)
3 \(\sec x+x \tan x-\frac{1}{2}\)
4 \(\sec x-\tan x-\frac{1}{2}\)
Integral Calculus

86326 If \(\int \frac{d x}{\left(x^{2}-2 x+10\right)^{2}}\)
\(=\mathbf{A}\left(\tan ^{-1}\left(\frac{\mathbf{x}-1}{3}\right)+\frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}^{2}-\mathbf{2 x}+\mathbf{1 0}}\right)+\mathbf{C}\)
where, \(C\) is a constant of integration, then

1 \(\mathrm{A}=\frac{1}{27}\) and \(\mathrm{f}(\mathrm{x})=9(\mathrm{x}-1)\)
2 \(A=\frac{1}{81}\) and \(\mathrm{f}(\mathrm{x})=3(\mathrm{x}-1)\)
3 \(\mathrm{A}=\frac{1}{54}\) and \(\mathrm{f}(\mathrm{x})=3(\mathrm{x}-1)\)
4 \(A=\frac{1}{54}\) and \(f(x)=9(x-1)^{2}\)
Integral Calculus

86334 \(\int \sin (11 x) \cdot \sin ^{9} x d x=\) \(+\mathbf{C}\).

1 \(\frac{\sin (10 x) \cdot \sin ^{10} x}{10}\)
2 \(\frac{\sin ^{11} x}{11}\)
3 \(\frac{\sin (9 \mathrm{x}) \cdot \sin ^{9} \mathrm{x}}{9}\)
4 \(\frac{\cos (10 x) \cdot \cos ^{10} x}{10}\)
Integral Calculus

86324 The integral \(\int \sec ^{2 / 3} x \operatorname{cosec}^{4 / 3} x d x\) is equal to (here \(\mathbf{C}\) is a constant of integration)

1 \(3 \tan ^{-1 / 3} \mathrm{x}+\mathrm{C}\)
2 \(-3 \tan ^{-1 / 3} \mathrm{x}+\mathrm{C}\)
3 \(-3 \cot ^{-1 / 3} x+C\)
4 \(-\frac{3}{4} \tan ^{-4 / 3} x+C\)
Integral Calculus

86325 If \(\int \mathrm{e}^{\sec x}\left(\sec x \tan x f(x)+\left(\sec x \tan x+\sec ^{2} x\right)\right)\) \(d x=e^{\sec x} f(x)+C\), then a possible choice of \(f(x)\) is

1 \(x \sec x+\tan x+\frac{1}{2}\)
2 \(\sec x+\tan x+\frac{1}{2}\)
3 \(\sec x+x \tan x-\frac{1}{2}\)
4 \(\sec x-\tan x-\frac{1}{2}\)
Integral Calculus

86326 If \(\int \frac{d x}{\left(x^{2}-2 x+10\right)^{2}}\)
\(=\mathbf{A}\left(\tan ^{-1}\left(\frac{\mathbf{x}-1}{3}\right)+\frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}^{2}-\mathbf{2 x}+\mathbf{1 0}}\right)+\mathbf{C}\)
where, \(C\) is a constant of integration, then

1 \(\mathrm{A}=\frac{1}{27}\) and \(\mathrm{f}(\mathrm{x})=9(\mathrm{x}-1)\)
2 \(A=\frac{1}{81}\) and \(\mathrm{f}(\mathrm{x})=3(\mathrm{x}-1)\)
3 \(\mathrm{A}=\frac{1}{54}\) and \(\mathrm{f}(\mathrm{x})=3(\mathrm{x}-1)\)
4 \(A=\frac{1}{54}\) and \(f(x)=9(x-1)^{2}\)
Integral Calculus

86334 \(\int \sin (11 x) \cdot \sin ^{9} x d x=\) \(+\mathbf{C}\).

1 \(\frac{\sin (10 x) \cdot \sin ^{10} x}{10}\)
2 \(\frac{\sin ^{11} x}{11}\)
3 \(\frac{\sin (9 \mathrm{x}) \cdot \sin ^{9} \mathrm{x}}{9}\)
4 \(\frac{\cos (10 x) \cdot \cos ^{10} x}{10}\)
Integral Calculus

86324 The integral \(\int \sec ^{2 / 3} x \operatorname{cosec}^{4 / 3} x d x\) is equal to (here \(\mathbf{C}\) is a constant of integration)

1 \(3 \tan ^{-1 / 3} \mathrm{x}+\mathrm{C}\)
2 \(-3 \tan ^{-1 / 3} \mathrm{x}+\mathrm{C}\)
3 \(-3 \cot ^{-1 / 3} x+C\)
4 \(-\frac{3}{4} \tan ^{-4 / 3} x+C\)
Integral Calculus

86325 If \(\int \mathrm{e}^{\sec x}\left(\sec x \tan x f(x)+\left(\sec x \tan x+\sec ^{2} x\right)\right)\) \(d x=e^{\sec x} f(x)+C\), then a possible choice of \(f(x)\) is

1 \(x \sec x+\tan x+\frac{1}{2}\)
2 \(\sec x+\tan x+\frac{1}{2}\)
3 \(\sec x+x \tan x-\frac{1}{2}\)
4 \(\sec x-\tan x-\frac{1}{2}\)
Integral Calculus

86326 If \(\int \frac{d x}{\left(x^{2}-2 x+10\right)^{2}}\)
\(=\mathbf{A}\left(\tan ^{-1}\left(\frac{\mathbf{x}-1}{3}\right)+\frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}^{2}-\mathbf{2 x}+\mathbf{1 0}}\right)+\mathbf{C}\)
where, \(C\) is a constant of integration, then

1 \(\mathrm{A}=\frac{1}{27}\) and \(\mathrm{f}(\mathrm{x})=9(\mathrm{x}-1)\)
2 \(A=\frac{1}{81}\) and \(\mathrm{f}(\mathrm{x})=3(\mathrm{x}-1)\)
3 \(\mathrm{A}=\frac{1}{54}\) and \(\mathrm{f}(\mathrm{x})=3(\mathrm{x}-1)\)
4 \(A=\frac{1}{54}\) and \(f(x)=9(x-1)^{2}\)
Integral Calculus

86334 \(\int \sin (11 x) \cdot \sin ^{9} x d x=\) \(+\mathbf{C}\).

1 \(\frac{\sin (10 x) \cdot \sin ^{10} x}{10}\)
2 \(\frac{\sin ^{11} x}{11}\)
3 \(\frac{\sin (9 \mathrm{x}) \cdot \sin ^{9} \mathrm{x}}{9}\)
4 \(\frac{\cos (10 x) \cdot \cos ^{10} x}{10}\)