Simple Problems
Application of Derivatives

85816 The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :

1 2
2 4
3 0
4 3
Application of Derivatives

85817 The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is

1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Application of Derivatives

85818 The polar equation of a curve centred at \((1,0)\) with radius 1 is

1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Application of Derivatives

85819 For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:

1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Application of Derivatives

85820 If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then

1 \(\mathrm{p}-\mathrm{q}=2\)
2 \(\frac{1}{\mathrm{p}}-\frac{1}{\mathrm{q}}=2\)
3 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=-2\)
4 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=2\)
Application of Derivatives

85816 The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :

1 2
2 4
3 0
4 3
Application of Derivatives

85817 The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is

1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Application of Derivatives

85818 The polar equation of a curve centred at \((1,0)\) with radius 1 is

1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Application of Derivatives

85819 For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:

1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Application of Derivatives

85820 If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then

1 \(\mathrm{p}-\mathrm{q}=2\)
2 \(\frac{1}{\mathrm{p}}-\frac{1}{\mathrm{q}}=2\)
3 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=-2\)
4 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85816 The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :

1 2
2 4
3 0
4 3
Application of Derivatives

85817 The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is

1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Application of Derivatives

85818 The polar equation of a curve centred at \((1,0)\) with radius 1 is

1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Application of Derivatives

85819 For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:

1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Application of Derivatives

85820 If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then

1 \(\mathrm{p}-\mathrm{q}=2\)
2 \(\frac{1}{\mathrm{p}}-\frac{1}{\mathrm{q}}=2\)
3 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=-2\)
4 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=2\)
Application of Derivatives

85816 The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :

1 2
2 4
3 0
4 3
Application of Derivatives

85817 The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is

1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Application of Derivatives

85818 The polar equation of a curve centred at \((1,0)\) with radius 1 is

1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Application of Derivatives

85819 For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:

1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Application of Derivatives

85820 If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then

1 \(\mathrm{p}-\mathrm{q}=2\)
2 \(\frac{1}{\mathrm{p}}-\frac{1}{\mathrm{q}}=2\)
3 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=-2\)
4 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=2\)
Application of Derivatives

85816 The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :

1 2
2 4
3 0
4 3
Application of Derivatives

85817 The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is

1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Application of Derivatives

85818 The polar equation of a curve centred at \((1,0)\) with radius 1 is

1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Application of Derivatives

85819 For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:

1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Application of Derivatives

85820 If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then

1 \(\mathrm{p}-\mathrm{q}=2\)
2 \(\frac{1}{\mathrm{p}}-\frac{1}{\mathrm{q}}=2\)
3 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=-2\)
4 \(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=2\)