85816
The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :
1 2
2 4
3 0
4 3
Explanation:
(B) The curve \(y=54 x^{5}-135 x^{4}-70 x^{3}+180 x^{2}+210 x\) And, normal of line is parallel to line \(x+90 y+2=0\) \(\mathrm{m}_{\text {normal }}=\frac{-1}{90} \Rightarrow-\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=\frac{-1}{90}\) \(\Rightarrow \quad\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=90\) Then, \(\quad \frac{d y}{d x}=270 x^{4}-540 x^{3}-210 x^{2}+360+210=90\) \(\Rightarrow \quad x=1,2, \frac{-2}{3}, \frac{-1}{3}=(4)\) Normals.
Shift-I
Application of Derivatives
85817
The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is
1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Explanation:
(C) : Consider ( \(\mathrm{x}, \mathrm{y})\) be the point on the curve \(2 x^{2}+y^{2}-2 x=0\) Then, its distance from \((\mathrm{a}, 0)\) is given by \(S=\sqrt{(x-a)^{2}+y^{2}}\) \(\Rightarrow \quad S^{2}=x^{2}-2 a x+a^{2}+2 x-2 x^{2}\) \(\quad\left[\text { Using, } 2 x^{2}+y^{2}-2 x,=0\right]\) \(\Rightarrow \quad S^{2}=-x^{2}+2 x(1-a)+a^{2}\) On, differentiation w. r. t. \(x\), we get- \(2 \mathrm{~S} \frac{\mathrm{dS}}{\mathrm{dx}}=-2 \mathrm{x}+2(1-\mathrm{a})\) For \(\mathrm{S}\) to be maxima / minima, \(\frac{\mathrm{dS}}{\mathrm{dx}}=0\) \(\Rightarrow \quad \begin{array}{ll}-2 \mathrm{x}+2(1-\mathrm{a})=0 \\ \mathrm{x}=1-\mathrm{a}\end{array}\) For maxima / minima, check second derivative, \(\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dt}^{2}}\lt 0, \text { for } \mathrm{x}=1-\mathrm{a}\) So, \(\mathrm{S}\) is maximum for \(\mathrm{x}=1-\mathrm{a}\). On putting \(x=1-a\) in equation (i), we get- \(\mathrm{S}=\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
AP EAMCET-2010
Application of Derivatives
85818
The polar equation of a curve centred at \((1,0)\) with radius 1 is
1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Explanation:
(D) : In polar form, \((\mathrm{x})=\mathrm{r} \cos \theta\) \(y_{2}=r \sin \theta\) \(r^{2}=x^{2}+y^{2}\) Equation of circle, \((x-\alpha)^{2}+(y-\beta)^{2}=r^{2}\) \((\alpha, \beta)\) are centre of circle. Then given that centre at \((1,0)\) and radius \(\rightarrow 1\) \((x-1)^{2}+y^{2}=1\) \(x^{2}+1-2 x+y^{2}=1\) \(x^{2}+y^{2}=2 x\) \(r^{2}=2 r \cos \theta\) \(r=2 \cos \theta\)
AMU-2004
Application of Derivatives
85819
For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:
1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Explanation:
(C) : For \(\theta \in\) IR When \((x, y)=(\tan \theta+\sin \theta),(\tan \theta-\sin \theta)\) \(\begin{align*} & x=\tan \theta+\sin \theta \tag{i}\\ & y=\tan \theta-\sin \theta \tag{ii} \end{align*}\) Adding the above equation, \(\frac{x+y}{2}=\tan \theta\) Subtracting the equation we get Now, \(\frac{x-y}{2}=\sin \theta\) \(\frac{x+y}{2}=\tan \theta\) Squaring the equation, \(\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{\cos ^{2} x} \Rightarrow\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{1-\sin ^{2} x}\) \(\left(\frac{x+y}{2}\right)^{2}=\frac{\left(\frac{x-y}{2}\right)^{2}}{1-\left(\frac{x-y}{2}\right)^{2}}\) \(x^{2}+y^{2}+2 x y=\frac{4\left[x^{2}+y^{2}-2 x y\right]}{4-\left(x^{2}+y^{2}-2 x y\right)}\) \(\Rightarrow 4 x^{2}+4 y^{2}+8 x y-x^{4}-y^{4}+4 x y-x^{2} y^{2}+2 x^{3} y-y^{2} x^{2}\) \(+2 x y^{3}-2 x^{3} y-2 x y^{3}=4 x^{2}+4 y^{2}-8 x y\) \(\Rightarrow\left(x^{2}-y^{2}\right)^{2}=16 x y\)
AMU-2004
Application of Derivatives
85820
If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then
85816
The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :
1 2
2 4
3 0
4 3
Explanation:
(B) The curve \(y=54 x^{5}-135 x^{4}-70 x^{3}+180 x^{2}+210 x\) And, normal of line is parallel to line \(x+90 y+2=0\) \(\mathrm{m}_{\text {normal }}=\frac{-1}{90} \Rightarrow-\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=\frac{-1}{90}\) \(\Rightarrow \quad\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=90\) Then, \(\quad \frac{d y}{d x}=270 x^{4}-540 x^{3}-210 x^{2}+360+210=90\) \(\Rightarrow \quad x=1,2, \frac{-2}{3}, \frac{-1}{3}=(4)\) Normals.
Shift-I
Application of Derivatives
85817
The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is
1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Explanation:
(C) : Consider ( \(\mathrm{x}, \mathrm{y})\) be the point on the curve \(2 x^{2}+y^{2}-2 x=0\) Then, its distance from \((\mathrm{a}, 0)\) is given by \(S=\sqrt{(x-a)^{2}+y^{2}}\) \(\Rightarrow \quad S^{2}=x^{2}-2 a x+a^{2}+2 x-2 x^{2}\) \(\quad\left[\text { Using, } 2 x^{2}+y^{2}-2 x,=0\right]\) \(\Rightarrow \quad S^{2}=-x^{2}+2 x(1-a)+a^{2}\) On, differentiation w. r. t. \(x\), we get- \(2 \mathrm{~S} \frac{\mathrm{dS}}{\mathrm{dx}}=-2 \mathrm{x}+2(1-\mathrm{a})\) For \(\mathrm{S}\) to be maxima / minima, \(\frac{\mathrm{dS}}{\mathrm{dx}}=0\) \(\Rightarrow \quad \begin{array}{ll}-2 \mathrm{x}+2(1-\mathrm{a})=0 \\ \mathrm{x}=1-\mathrm{a}\end{array}\) For maxima / minima, check second derivative, \(\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dt}^{2}}\lt 0, \text { for } \mathrm{x}=1-\mathrm{a}\) So, \(\mathrm{S}\) is maximum for \(\mathrm{x}=1-\mathrm{a}\). On putting \(x=1-a\) in equation (i), we get- \(\mathrm{S}=\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
AP EAMCET-2010
Application of Derivatives
85818
The polar equation of a curve centred at \((1,0)\) with radius 1 is
1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Explanation:
(D) : In polar form, \((\mathrm{x})=\mathrm{r} \cos \theta\) \(y_{2}=r \sin \theta\) \(r^{2}=x^{2}+y^{2}\) Equation of circle, \((x-\alpha)^{2}+(y-\beta)^{2}=r^{2}\) \((\alpha, \beta)\) are centre of circle. Then given that centre at \((1,0)\) and radius \(\rightarrow 1\) \((x-1)^{2}+y^{2}=1\) \(x^{2}+1-2 x+y^{2}=1\) \(x^{2}+y^{2}=2 x\) \(r^{2}=2 r \cos \theta\) \(r=2 \cos \theta\)
AMU-2004
Application of Derivatives
85819
For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:
1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Explanation:
(C) : For \(\theta \in\) IR When \((x, y)=(\tan \theta+\sin \theta),(\tan \theta-\sin \theta)\) \(\begin{align*} & x=\tan \theta+\sin \theta \tag{i}\\ & y=\tan \theta-\sin \theta \tag{ii} \end{align*}\) Adding the above equation, \(\frac{x+y}{2}=\tan \theta\) Subtracting the equation we get Now, \(\frac{x-y}{2}=\sin \theta\) \(\frac{x+y}{2}=\tan \theta\) Squaring the equation, \(\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{\cos ^{2} x} \Rightarrow\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{1-\sin ^{2} x}\) \(\left(\frac{x+y}{2}\right)^{2}=\frac{\left(\frac{x-y}{2}\right)^{2}}{1-\left(\frac{x-y}{2}\right)^{2}}\) \(x^{2}+y^{2}+2 x y=\frac{4\left[x^{2}+y^{2}-2 x y\right]}{4-\left(x^{2}+y^{2}-2 x y\right)}\) \(\Rightarrow 4 x^{2}+4 y^{2}+8 x y-x^{4}-y^{4}+4 x y-x^{2} y^{2}+2 x^{3} y-y^{2} x^{2}\) \(+2 x y^{3}-2 x^{3} y-2 x y^{3}=4 x^{2}+4 y^{2}-8 x y\) \(\Rightarrow\left(x^{2}-y^{2}\right)^{2}=16 x y\)
AMU-2004
Application of Derivatives
85820
If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Application of Derivatives
85816
The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :
1 2
2 4
3 0
4 3
Explanation:
(B) The curve \(y=54 x^{5}-135 x^{4}-70 x^{3}+180 x^{2}+210 x\) And, normal of line is parallel to line \(x+90 y+2=0\) \(\mathrm{m}_{\text {normal }}=\frac{-1}{90} \Rightarrow-\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=\frac{-1}{90}\) \(\Rightarrow \quad\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=90\) Then, \(\quad \frac{d y}{d x}=270 x^{4}-540 x^{3}-210 x^{2}+360+210=90\) \(\Rightarrow \quad x=1,2, \frac{-2}{3}, \frac{-1}{3}=(4)\) Normals.
Shift-I
Application of Derivatives
85817
The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is
1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Explanation:
(C) : Consider ( \(\mathrm{x}, \mathrm{y})\) be the point on the curve \(2 x^{2}+y^{2}-2 x=0\) Then, its distance from \((\mathrm{a}, 0)\) is given by \(S=\sqrt{(x-a)^{2}+y^{2}}\) \(\Rightarrow \quad S^{2}=x^{2}-2 a x+a^{2}+2 x-2 x^{2}\) \(\quad\left[\text { Using, } 2 x^{2}+y^{2}-2 x,=0\right]\) \(\Rightarrow \quad S^{2}=-x^{2}+2 x(1-a)+a^{2}\) On, differentiation w. r. t. \(x\), we get- \(2 \mathrm{~S} \frac{\mathrm{dS}}{\mathrm{dx}}=-2 \mathrm{x}+2(1-\mathrm{a})\) For \(\mathrm{S}\) to be maxima / minima, \(\frac{\mathrm{dS}}{\mathrm{dx}}=0\) \(\Rightarrow \quad \begin{array}{ll}-2 \mathrm{x}+2(1-\mathrm{a})=0 \\ \mathrm{x}=1-\mathrm{a}\end{array}\) For maxima / minima, check second derivative, \(\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dt}^{2}}\lt 0, \text { for } \mathrm{x}=1-\mathrm{a}\) So, \(\mathrm{S}\) is maximum for \(\mathrm{x}=1-\mathrm{a}\). On putting \(x=1-a\) in equation (i), we get- \(\mathrm{S}=\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
AP EAMCET-2010
Application of Derivatives
85818
The polar equation of a curve centred at \((1,0)\) with radius 1 is
1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Explanation:
(D) : In polar form, \((\mathrm{x})=\mathrm{r} \cos \theta\) \(y_{2}=r \sin \theta\) \(r^{2}=x^{2}+y^{2}\) Equation of circle, \((x-\alpha)^{2}+(y-\beta)^{2}=r^{2}\) \((\alpha, \beta)\) are centre of circle. Then given that centre at \((1,0)\) and radius \(\rightarrow 1\) \((x-1)^{2}+y^{2}=1\) \(x^{2}+1-2 x+y^{2}=1\) \(x^{2}+y^{2}=2 x\) \(r^{2}=2 r \cos \theta\) \(r=2 \cos \theta\)
AMU-2004
Application of Derivatives
85819
For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:
1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Explanation:
(C) : For \(\theta \in\) IR When \((x, y)=(\tan \theta+\sin \theta),(\tan \theta-\sin \theta)\) \(\begin{align*} & x=\tan \theta+\sin \theta \tag{i}\\ & y=\tan \theta-\sin \theta \tag{ii} \end{align*}\) Adding the above equation, \(\frac{x+y}{2}=\tan \theta\) Subtracting the equation we get Now, \(\frac{x-y}{2}=\sin \theta\) \(\frac{x+y}{2}=\tan \theta\) Squaring the equation, \(\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{\cos ^{2} x} \Rightarrow\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{1-\sin ^{2} x}\) \(\left(\frac{x+y}{2}\right)^{2}=\frac{\left(\frac{x-y}{2}\right)^{2}}{1-\left(\frac{x-y}{2}\right)^{2}}\) \(x^{2}+y^{2}+2 x y=\frac{4\left[x^{2}+y^{2}-2 x y\right]}{4-\left(x^{2}+y^{2}-2 x y\right)}\) \(\Rightarrow 4 x^{2}+4 y^{2}+8 x y-x^{4}-y^{4}+4 x y-x^{2} y^{2}+2 x^{3} y-y^{2} x^{2}\) \(+2 x y^{3}-2 x^{3} y-2 x y^{3}=4 x^{2}+4 y^{2}-8 x y\) \(\Rightarrow\left(x^{2}-y^{2}\right)^{2}=16 x y\)
AMU-2004
Application of Derivatives
85820
If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then
85816
The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :
1 2
2 4
3 0
4 3
Explanation:
(B) The curve \(y=54 x^{5}-135 x^{4}-70 x^{3}+180 x^{2}+210 x\) And, normal of line is parallel to line \(x+90 y+2=0\) \(\mathrm{m}_{\text {normal }}=\frac{-1}{90} \Rightarrow-\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=\frac{-1}{90}\) \(\Rightarrow \quad\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=90\) Then, \(\quad \frac{d y}{d x}=270 x^{4}-540 x^{3}-210 x^{2}+360+210=90\) \(\Rightarrow \quad x=1,2, \frac{-2}{3}, \frac{-1}{3}=(4)\) Normals.
Shift-I
Application of Derivatives
85817
The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is
1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Explanation:
(C) : Consider ( \(\mathrm{x}, \mathrm{y})\) be the point on the curve \(2 x^{2}+y^{2}-2 x=0\) Then, its distance from \((\mathrm{a}, 0)\) is given by \(S=\sqrt{(x-a)^{2}+y^{2}}\) \(\Rightarrow \quad S^{2}=x^{2}-2 a x+a^{2}+2 x-2 x^{2}\) \(\quad\left[\text { Using, } 2 x^{2}+y^{2}-2 x,=0\right]\) \(\Rightarrow \quad S^{2}=-x^{2}+2 x(1-a)+a^{2}\) On, differentiation w. r. t. \(x\), we get- \(2 \mathrm{~S} \frac{\mathrm{dS}}{\mathrm{dx}}=-2 \mathrm{x}+2(1-\mathrm{a})\) For \(\mathrm{S}\) to be maxima / minima, \(\frac{\mathrm{dS}}{\mathrm{dx}}=0\) \(\Rightarrow \quad \begin{array}{ll}-2 \mathrm{x}+2(1-\mathrm{a})=0 \\ \mathrm{x}=1-\mathrm{a}\end{array}\) For maxima / minima, check second derivative, \(\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dt}^{2}}\lt 0, \text { for } \mathrm{x}=1-\mathrm{a}\) So, \(\mathrm{S}\) is maximum for \(\mathrm{x}=1-\mathrm{a}\). On putting \(x=1-a\) in equation (i), we get- \(\mathrm{S}=\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
AP EAMCET-2010
Application of Derivatives
85818
The polar equation of a curve centred at \((1,0)\) with radius 1 is
1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Explanation:
(D) : In polar form, \((\mathrm{x})=\mathrm{r} \cos \theta\) \(y_{2}=r \sin \theta\) \(r^{2}=x^{2}+y^{2}\) Equation of circle, \((x-\alpha)^{2}+(y-\beta)^{2}=r^{2}\) \((\alpha, \beta)\) are centre of circle. Then given that centre at \((1,0)\) and radius \(\rightarrow 1\) \((x-1)^{2}+y^{2}=1\) \(x^{2}+1-2 x+y^{2}=1\) \(x^{2}+y^{2}=2 x\) \(r^{2}=2 r \cos \theta\) \(r=2 \cos \theta\)
AMU-2004
Application of Derivatives
85819
For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:
1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Explanation:
(C) : For \(\theta \in\) IR When \((x, y)=(\tan \theta+\sin \theta),(\tan \theta-\sin \theta)\) \(\begin{align*} & x=\tan \theta+\sin \theta \tag{i}\\ & y=\tan \theta-\sin \theta \tag{ii} \end{align*}\) Adding the above equation, \(\frac{x+y}{2}=\tan \theta\) Subtracting the equation we get Now, \(\frac{x-y}{2}=\sin \theta\) \(\frac{x+y}{2}=\tan \theta\) Squaring the equation, \(\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{\cos ^{2} x} \Rightarrow\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{1-\sin ^{2} x}\) \(\left(\frac{x+y}{2}\right)^{2}=\frac{\left(\frac{x-y}{2}\right)^{2}}{1-\left(\frac{x-y}{2}\right)^{2}}\) \(x^{2}+y^{2}+2 x y=\frac{4\left[x^{2}+y^{2}-2 x y\right]}{4-\left(x^{2}+y^{2}-2 x y\right)}\) \(\Rightarrow 4 x^{2}+4 y^{2}+8 x y-x^{4}-y^{4}+4 x y-x^{2} y^{2}+2 x^{3} y-y^{2} x^{2}\) \(+2 x y^{3}-2 x^{3} y-2 x y^{3}=4 x^{2}+4 y^{2}-8 x y\) \(\Rightarrow\left(x^{2}-y^{2}\right)^{2}=16 x y\)
AMU-2004
Application of Derivatives
85820
If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then
85816
The number of points on the curve \(y=54 x^{5}-\) \(135 x^{4}-70 x^{3}+180 x^{2}+210 x\) at which the normal lines are parallel to \(x+90 y+2=0\) is :
1 2
2 4
3 0
4 3
Explanation:
(B) The curve \(y=54 x^{5}-135 x^{4}-70 x^{3}+180 x^{2}+210 x\) And, normal of line is parallel to line \(x+90 y+2=0\) \(\mathrm{m}_{\text {normal }}=\frac{-1}{90} \Rightarrow-\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=\frac{-1}{90}\) \(\Rightarrow \quad\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=90\) Then, \(\quad \frac{d y}{d x}=270 x^{4}-540 x^{3}-210 x^{2}+360+210=90\) \(\Rightarrow \quad x=1,2, \frac{-2}{3}, \frac{-1}{3}=(4)\) Normals.
Shift-I
Application of Derivatives
85817
The longest distance of the point \((a, 0)\) from the curve \(2 x^{2}+y^{2}=2 x\) is
1 \(1+\mathrm{a}\)
2 \(|1-\mathrm{a}|\)
3 \(\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
4 \(\sqrt{1-2 \mathrm{a}+3 \mathrm{a}^{2}}\)
Explanation:
(C) : Consider ( \(\mathrm{x}, \mathrm{y})\) be the point on the curve \(2 x^{2}+y^{2}-2 x=0\) Then, its distance from \((\mathrm{a}, 0)\) is given by \(S=\sqrt{(x-a)^{2}+y^{2}}\) \(\Rightarrow \quad S^{2}=x^{2}-2 a x+a^{2}+2 x-2 x^{2}\) \(\quad\left[\text { Using, } 2 x^{2}+y^{2}-2 x,=0\right]\) \(\Rightarrow \quad S^{2}=-x^{2}+2 x(1-a)+a^{2}\) On, differentiation w. r. t. \(x\), we get- \(2 \mathrm{~S} \frac{\mathrm{dS}}{\mathrm{dx}}=-2 \mathrm{x}+2(1-\mathrm{a})\) For \(\mathrm{S}\) to be maxima / minima, \(\frac{\mathrm{dS}}{\mathrm{dx}}=0\) \(\Rightarrow \quad \begin{array}{ll}-2 \mathrm{x}+2(1-\mathrm{a})=0 \\ \mathrm{x}=1-\mathrm{a}\end{array}\) For maxima / minima, check second derivative, \(\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dt}^{2}}\lt 0, \text { for } \mathrm{x}=1-\mathrm{a}\) So, \(\mathrm{S}\) is maximum for \(\mathrm{x}=1-\mathrm{a}\). On putting \(x=1-a\) in equation (i), we get- \(\mathrm{S}=\sqrt{1-2 \mathrm{a}+2 \mathrm{a}^{2}}\)
AP EAMCET-2010
Application of Derivatives
85818
The polar equation of a curve centred at \((1,0)\) with radius 1 is
1 \(r=\cos \theta\)
2 \(\mathrm{r}=2\)
3 \(\mathrm{r}=\sin 2 \theta\)
4 \(\mathrm{r}=2 \cos \theta\)
Explanation:
(D) : In polar form, \((\mathrm{x})=\mathrm{r} \cos \theta\) \(y_{2}=r \sin \theta\) \(r^{2}=x^{2}+y^{2}\) Equation of circle, \((x-\alpha)^{2}+(y-\beta)^{2}=r^{2}\) \((\alpha, \beta)\) are centre of circle. Then given that centre at \((1,0)\) and radius \(\rightarrow 1\) \((x-1)^{2}+y^{2}=1\) \(x^{2}+1-2 x+y^{2}=1\) \(x^{2}+y^{2}=2 x\) \(r^{2}=2 r \cos \theta\) \(r=2 \cos \theta\)
AMU-2004
Application of Derivatives
85819
For \(\theta \in I R\), when the point \((x, y)=(\tan \theta+\sin \theta\), \(\boldsymbol{\operatorname { t a n }} \theta-\boldsymbol{\operatorname { s i n }} \theta\) ) is defined, it lies on the curve:
1 \(x^{2}+y^{2}=2 x y\)
2 \(x^{2}-y^{2}=8 x y\)
3 \(\left(x^{2}-y^{2}\right)^{2}=16 x y\)
4 \(\left(x^{2}+y^{2}\right)^{2}=4 x y\)
Explanation:
(C) : For \(\theta \in\) IR When \((x, y)=(\tan \theta+\sin \theta),(\tan \theta-\sin \theta)\) \(\begin{align*} & x=\tan \theta+\sin \theta \tag{i}\\ & y=\tan \theta-\sin \theta \tag{ii} \end{align*}\) Adding the above equation, \(\frac{x+y}{2}=\tan \theta\) Subtracting the equation we get Now, \(\frac{x-y}{2}=\sin \theta\) \(\frac{x+y}{2}=\tan \theta\) Squaring the equation, \(\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{\cos ^{2} x} \Rightarrow\left(\frac{x+y}{2}\right)^{2}=\frac{\sin ^{2} x}{1-\sin ^{2} x}\) \(\left(\frac{x+y}{2}\right)^{2}=\frac{\left(\frac{x-y}{2}\right)^{2}}{1-\left(\frac{x-y}{2}\right)^{2}}\) \(x^{2}+y^{2}+2 x y=\frac{4\left[x^{2}+y^{2}-2 x y\right]}{4-\left(x^{2}+y^{2}-2 x y\right)}\) \(\Rightarrow 4 x^{2}+4 y^{2}+8 x y-x^{4}-y^{4}+4 x y-x^{2} y^{2}+2 x^{3} y-y^{2} x^{2}\) \(+2 x y^{3}-2 x^{3} y-2 x y^{3}=4 x^{2}+4 y^{2}-8 x y\) \(\Rightarrow\left(x^{2}-y^{2}\right)^{2}=16 x y\)
AMU-2004
Application of Derivatives
85820
If the curves \(x^{2}+p y^{2}=1\) and \(q x^{2}+y^{2}=1\) are orthogonal to each other, then