Maxima and Minima
Application of Derivatives

85706 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}\) for every real number \(x\), then the minimum value of \(f\) is

1 does not exist
2 1
3 -1
4 2
Application of Derivatives

85708 The sum of absolute maximum and absolute minimum values of the function \(f(x)=\mid 2 x^{2}+3 x\) \(-2 \mid+\sin x \cos x\) in the interval \([0,1]\) is :

1 \(3+\frac{\sin (1) \cos ^{2}(1 / 2)}{2}\)
2 \(3+\frac{1}{2}(1+2 \cos (1)) \sin (1)\)
3 \(5+\frac{1}{2}(\sin (1)+\sin (2))\)
4 \(2+\sin \left(\frac{1}{2}\right) \cos \left(\frac{1}{2}\right)\)
Application of Derivatives

85709 Through the point \((4,5)\), a straight line is drawn making positive intercepts on the coordinate axes. The area of the triangle thus formed is least, when the ratio of the intercepts on the \(x\) and \(y\) axes is

1 \(1: 1\)
2 \(3: 4\)
3 \(4: 5\)
4 \(2: 3\)
Application of Derivatives

85710 If the function \(f(x)=a \sin (x)+\frac{1}{3} \sin (3 x)\) attains maximum value at \(\mathrm{x}=\frac{\pi}{3}\), then ' \(\mathrm{a}\) '

1 3
2 \(\frac{1}{3}\)
3 2
4 \(\frac{1}{2}\)
Application of Derivatives

85711 If \(x, y, z\) are three positive numbers, then the minimum value of \(\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\) is

1 1
2 2
3 3
4 6
Application of Derivatives

85706 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}\) for every real number \(x\), then the minimum value of \(f\) is

1 does not exist
2 1
3 -1
4 2
Application of Derivatives

85708 The sum of absolute maximum and absolute minimum values of the function \(f(x)=\mid 2 x^{2}+3 x\) \(-2 \mid+\sin x \cos x\) in the interval \([0,1]\) is :

1 \(3+\frac{\sin (1) \cos ^{2}(1 / 2)}{2}\)
2 \(3+\frac{1}{2}(1+2 \cos (1)) \sin (1)\)
3 \(5+\frac{1}{2}(\sin (1)+\sin (2))\)
4 \(2+\sin \left(\frac{1}{2}\right) \cos \left(\frac{1}{2}\right)\)
Application of Derivatives

85709 Through the point \((4,5)\), a straight line is drawn making positive intercepts on the coordinate axes. The area of the triangle thus formed is least, when the ratio of the intercepts on the \(x\) and \(y\) axes is

1 \(1: 1\)
2 \(3: 4\)
3 \(4: 5\)
4 \(2: 3\)
Application of Derivatives

85710 If the function \(f(x)=a \sin (x)+\frac{1}{3} \sin (3 x)\) attains maximum value at \(\mathrm{x}=\frac{\pi}{3}\), then ' \(\mathrm{a}\) '

1 3
2 \(\frac{1}{3}\)
3 2
4 \(\frac{1}{2}\)
Application of Derivatives

85711 If \(x, y, z\) are three positive numbers, then the minimum value of \(\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\) is

1 1
2 2
3 3
4 6
Application of Derivatives

85706 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}\) for every real number \(x\), then the minimum value of \(f\) is

1 does not exist
2 1
3 -1
4 2
Application of Derivatives

85708 The sum of absolute maximum and absolute minimum values of the function \(f(x)=\mid 2 x^{2}+3 x\) \(-2 \mid+\sin x \cos x\) in the interval \([0,1]\) is :

1 \(3+\frac{\sin (1) \cos ^{2}(1 / 2)}{2}\)
2 \(3+\frac{1}{2}(1+2 \cos (1)) \sin (1)\)
3 \(5+\frac{1}{2}(\sin (1)+\sin (2))\)
4 \(2+\sin \left(\frac{1}{2}\right) \cos \left(\frac{1}{2}\right)\)
Application of Derivatives

85709 Through the point \((4,5)\), a straight line is drawn making positive intercepts on the coordinate axes. The area of the triangle thus formed is least, when the ratio of the intercepts on the \(x\) and \(y\) axes is

1 \(1: 1\)
2 \(3: 4\)
3 \(4: 5\)
4 \(2: 3\)
Application of Derivatives

85710 If the function \(f(x)=a \sin (x)+\frac{1}{3} \sin (3 x)\) attains maximum value at \(\mathrm{x}=\frac{\pi}{3}\), then ' \(\mathrm{a}\) '

1 3
2 \(\frac{1}{3}\)
3 2
4 \(\frac{1}{2}\)
Application of Derivatives

85711 If \(x, y, z\) are three positive numbers, then the minimum value of \(\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\) is

1 1
2 2
3 3
4 6
Application of Derivatives

85706 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}\) for every real number \(x\), then the minimum value of \(f\) is

1 does not exist
2 1
3 -1
4 2
Application of Derivatives

85708 The sum of absolute maximum and absolute minimum values of the function \(f(x)=\mid 2 x^{2}+3 x\) \(-2 \mid+\sin x \cos x\) in the interval \([0,1]\) is :

1 \(3+\frac{\sin (1) \cos ^{2}(1 / 2)}{2}\)
2 \(3+\frac{1}{2}(1+2 \cos (1)) \sin (1)\)
3 \(5+\frac{1}{2}(\sin (1)+\sin (2))\)
4 \(2+\sin \left(\frac{1}{2}\right) \cos \left(\frac{1}{2}\right)\)
Application of Derivatives

85709 Through the point \((4,5)\), a straight line is drawn making positive intercepts on the coordinate axes. The area of the triangle thus formed is least, when the ratio of the intercepts on the \(x\) and \(y\) axes is

1 \(1: 1\)
2 \(3: 4\)
3 \(4: 5\)
4 \(2: 3\)
Application of Derivatives

85710 If the function \(f(x)=a \sin (x)+\frac{1}{3} \sin (3 x)\) attains maximum value at \(\mathrm{x}=\frac{\pi}{3}\), then ' \(\mathrm{a}\) '

1 3
2 \(\frac{1}{3}\)
3 2
4 \(\frac{1}{2}\)
Application of Derivatives

85711 If \(x, y, z\) are three positive numbers, then the minimum value of \(\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\) is

1 1
2 2
3 3
4 6
Application of Derivatives

85706 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}\) for every real number \(x\), then the minimum value of \(f\) is

1 does not exist
2 1
3 -1
4 2
Application of Derivatives

85708 The sum of absolute maximum and absolute minimum values of the function \(f(x)=\mid 2 x^{2}+3 x\) \(-2 \mid+\sin x \cos x\) in the interval \([0,1]\) is :

1 \(3+\frac{\sin (1) \cos ^{2}(1 / 2)}{2}\)
2 \(3+\frac{1}{2}(1+2 \cos (1)) \sin (1)\)
3 \(5+\frac{1}{2}(\sin (1)+\sin (2))\)
4 \(2+\sin \left(\frac{1}{2}\right) \cos \left(\frac{1}{2}\right)\)
Application of Derivatives

85709 Through the point \((4,5)\), a straight line is drawn making positive intercepts on the coordinate axes. The area of the triangle thus formed is least, when the ratio of the intercepts on the \(x\) and \(y\) axes is

1 \(1: 1\)
2 \(3: 4\)
3 \(4: 5\)
4 \(2: 3\)
Application of Derivatives

85710 If the function \(f(x)=a \sin (x)+\frac{1}{3} \sin (3 x)\) attains maximum value at \(\mathrm{x}=\frac{\pi}{3}\), then ' \(\mathrm{a}\) '

1 3
2 \(\frac{1}{3}\)
3 2
4 \(\frac{1}{2}\)
Application of Derivatives

85711 If \(x, y, z\) are three positive numbers, then the minimum value of \(\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\) is

1 1
2 2
3 3
4 6